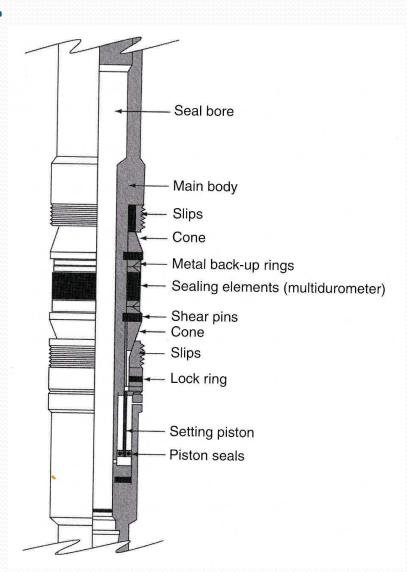
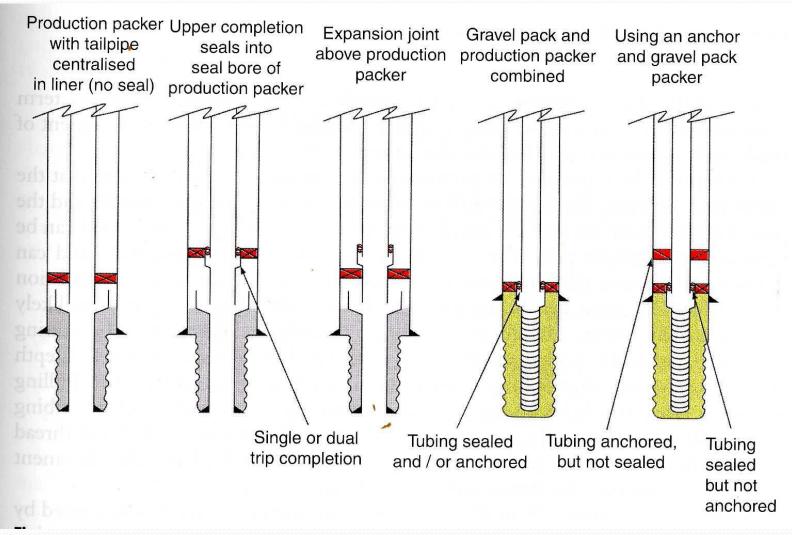
# Chapter 10 – Completion Hardware

Lecture 2 Packers Expansion Devices Tubing Landing Nipples, Locks & Sliding Sleeves

### **Packer Functions**


- Isolate the annulus to provide sufficient barriers or casing corrosion prevention (production packer)
- Isolate different production zones for zonal isolation (e.g. downhole flow control wells)
- Isolate gravel and sand (gravel pack packer and sump packer)
- Provide an annular seal in conjunction with an ASV
- Provide a repair or isolation capability (e.g. straddle pakcers)

### **Production Packer**


All packers set by applying compressive force to the packing element.

First the slips move outward and grip the inside of the casing. The compressive force causes a sleeve to ride over the cone element and apply compression to the packing element. The packing element expands and contacts the casing wall.

This setting action happens in a fraction of a second.



#### **Packer Configurations**



## **Types of Packers**

- Permanent Packers cannot be entirely retrieved and reinstalled in the wellbore. This type of packer is normally run and set separately on electric cable or slickline, a workstring, and the tubing is stabbed into or over the packer.
- Retrievable Packers designed to be retrieved and reinstalled in the wellbore. Retrievable packers are normally run integrally with the tubing string and are set with either mechanical manipulation or hydraulic pressure.
- Other considerations setting method and connection to the tubing

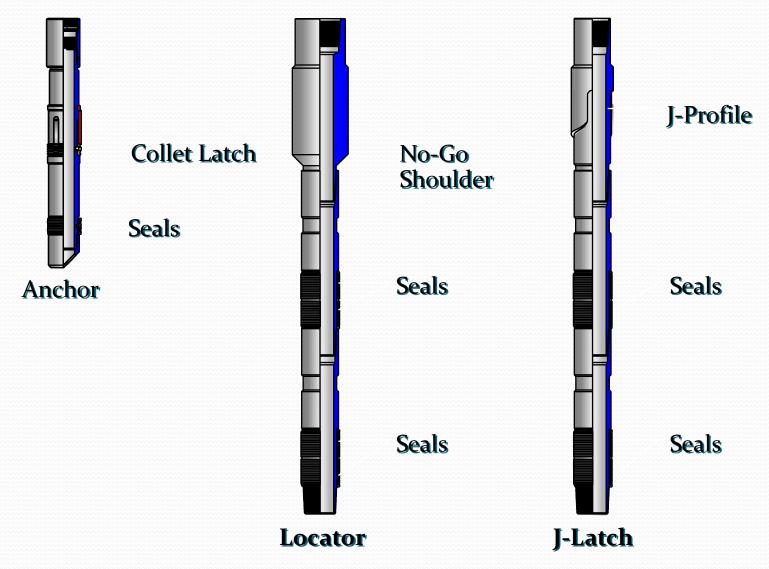
### **Retrievable Packers**

- Setting Methods
  - Mechanically set
  - Hydraulically set
  - Wireline-set
  - Hydraulic setting tool (sealbore-retrievable)
- Typical operating ranges
  - General use 275°F 6500-7500 psi
  - HPHT 350°F 10,000 psi

#### **Permanent Packers**

#### Setting Method

- Electric line/wireline-set
- Hydraulically set
- Mechanically set
- Hydraulic setting tools
- Typical operating ranges
  - General use 325°F 15,000 psi


### **Setting Method**


- Mechanical Rotation, compression, tension
- Hydraulic pumping fluid in to shear a pin
- Electric line uses an explosive tool to create the compression. Usually a permanent packer is more likely to be set this way.

#### **Production Packer Ascessories**

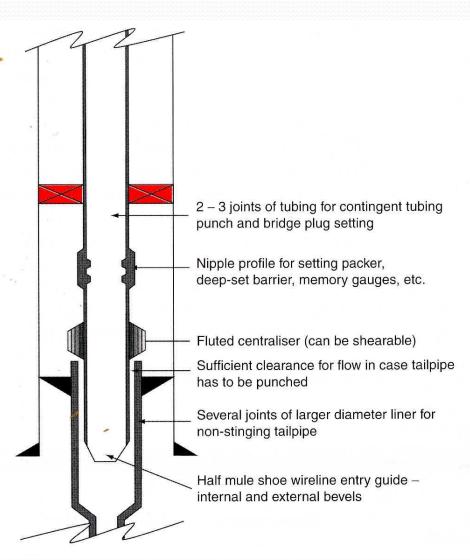
- Seal units
- Polished bore receptacles
- Seal extensions
- Mill-out extensions
- Overshot tubing seal dividers
- Packer plugs

# **Stab in Tubing Connections**

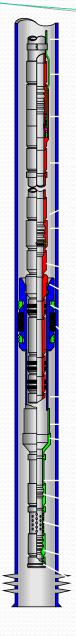




#### **Old Retrievable Packer for Servicing**




#### Anchor – Packer with no seal


- Prevent tubing movement in pumped wells especially sucker rod pumped wells
- Prevent tubing movement (and reduce associated stresses) when the tubing is sealed into a gravel pack packer
- Transfer tubing loads to the casing in weight-sensitive applications such as Tension Leg Platforms (TLPs)

# Packer Tailpipe

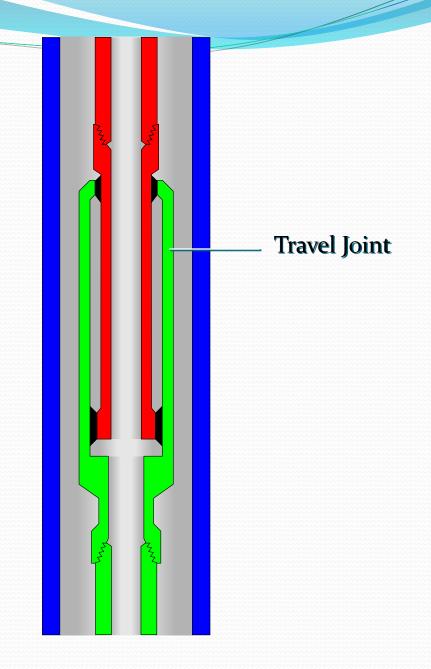
- A common completion design is to use a production packer and to sting (but not seal) this into a sand control completion or cemented liner.
- This design allows a plug to be set below the packer for contingent tophole workovers. The plug can be punched open if it gets stuck.



#### Single-String Permanent Packer Completion

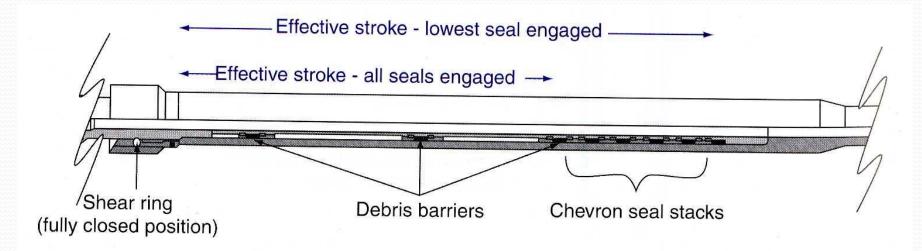


**Hydraulic Control Line Flow Coupling Tubing-Retrievable** Safety Valve **Flow Coupling Flow Coupling Sliding Side-Door Circulating Device Flow Coupling Straight Slot Locator** Seal Units and Accessories **Permanent Packer Sealbore Extension Millout Extension** Adapter **Tubing Joint or Pup** X Landing Nipple **Perforated Pup Joint** Landing Nipple Wireline Re-entry Guide


# Method of Connecting Packer to Tubing

- Determines Method of allowing for downhole expansion
- Packer can be threaded onto tubing (fixed connection, no movement at this point); tubing can be stabbed to receptacle on top of the packer (fixed connection, no movement at this point); seal assembly may be used to allow for movement at the connection

#### Expansion


#### Devices

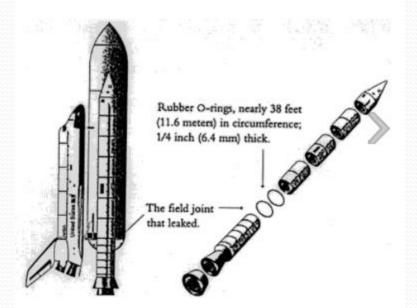
- Extra-long Tubing Seal Receptacle (ELTSR)
- Telescoping Joint/Travel Joint
- Expansion devices are used to allow for movement which reduces stresses on packers and tubing, from thermal and downhole changes in pressue



#### **Polished Bore Receptacle**

- PBR is a general term for any polished bore which receives a stab-in type seal assembly. ELTSR's employ a stab over design.
- PRBs can be included at the top of a drilling liner




## **Elastomeric Seals**

- All expansion devices (and many other completion devices) require elastomeric seals
- Elastomer trademarks
  - Aflas
  - Chemraz
  - Kalraz
  - Viton
  - Fluorel
- Non-Elastomer trademarks
  - PEEK
  - Ryton
  - Teflon

## Space Shuttle Challenger

• O-ring seal in the right solid rocket booster failed at liftoff causing the shuttle to break apart 73 seconds after takeoff.

Challenger O-Rings





#### Seals and Packer Elements Guidelines (1 of 3)

| Compound <sup>(1)</sup>       | Nitril(6)        | Fluorocarbon <sup>(6)</sup> | Aflas <sup>(4,6)</sup> | Chemrar <mark>(</mark> 3) | EPDM           |
|-------------------------------|------------------|-----------------------------|------------------------|---------------------------|----------------|
| Service Temperatu             | re -10° to 275°F | -10 to 400°F                | 100 - 400°F            | 40 to 400°F               | -30 to 300°F   |
| °F (°C)                       | (-23 to 135°C)   | (-23 to 204°C)              | (38 to 204°C)          | (4 to 204°C)              | (-34 to 149°C) |
| Pressure (2)<br>psi (MPa)     | 10,000<br>(69)   | 9000<br>(62,1)              | 8000<br>(55.2)         | бооо<br>(41.4)            | 3000<br>(20.7) |
| Environments                  |                  |                             |                        |                           |                |
| H <sub>2</sub> S              | NR               | Α                           | A                      | Α                         | NR             |
| CO <sub>2</sub>               | Α                | В                           | В                      | А                         | NR             |
| CH <sub>4</sub> (Methane)     | В                | А                           | А                      | A                         | NR             |
| Hydrocarbons<br>(Sweet Crude) | Α                | Α                           | A                      | А                         | NR             |

A: Satisfactory B: Little or No Effect C: Swells NR: Not RecommendedNT: Not Tested

Note: These materials are mainly used as O-rings.

All pressure tests were done using 6 mil (0.006-in.) gaps; larger radial gaps will reduce pressure rating. Backup rings must be used above 250°F (121.1°C) and 4000 psi (27.6 MPa).

Backup rings must be used above 350°F (176.7°C) and 5000 psi (34.5 MPa).

Water-soluble inhibitors only. Good for O-rings, packer elements, and molded seals.

#### Seals and Packer Elements Guidelines (2 of 3)

| Compound <sup>(1)</sup>  | Nitril(6)        | Fluorocarbon <sup>(6)</sup> | Aflas <sup>(4,6)</sup> | Chemra <mark>(</mark> 3) | EPDM           |
|--------------------------|------------------|-----------------------------|------------------------|--------------------------|----------------|
| Service Temperatur       | re -10° to 275°F | -10 to 400°F                | 100 - 400°F            | 40 to 400°F              | -30 to 300°F   |
| °F (° C)                 | (-23 to 135°C)   | (-23 to 204°C)              | (38 to 204°C)          | (4 to 204°C)             | (-34 to 149°C) |
| Pressure(2)<br>psi (MPa) | 10,000<br>(69)   | 9000<br>(62.1)              | 8000<br>(55.2)         | бооо<br>(41.4)           | 3000<br>(20.7) |
| Environments             |                  |                             |                        |                          |                |
| Xylene                   | NR               | Α                           | В                      | Α                        | NR             |
| Alcohols                 | Α                | С                           | В                      | Α                        | В              |
| Zinc Bromide             | NR               | А                           | А                      | Α                        | NT             |
| Inhibitors               | B(5)             | NR                          | А                      | Α                        | NT             |

A: Satisfactory B: Little or No Effect C: Swells NR: Not RecommendedNT: Not Tested

Note: These materials are mainly used as O-rings. All pressure tests were done using 6 mil (0.006-in.) gaps; larger radial gaps will reduce pressure rating. Backup rings must be used above 250°F (121.1°C) and 4000 psi (27.6 MPa). Backup rings must be used above 350°F (176.7°C) and 5000 psi (34.5 MPa). Water-soluble inhibitors only. Good for O-rings, packer elements, and molded seals.

#### Seals and Packer Elements Guidelines (3 of 3)

| Compound <sup>(1)</sup>    | Nitril <sup>(6)</sup> | Fluorocarbon <sup>(6)</sup> | Aflas <sup>(4,6)</sup> | Chemraz(3)     | EPDM           |
|----------------------------|-----------------------|-----------------------------|------------------------|----------------|----------------|
| Service Temperatu          | re -10° to 275°F      | -10 to 400°F                | 100 - 400°F            | 40 to 400°F    | -30 to 300°F   |
| °F (° C)                   | (-23 to 135°C)        | (-23 to 204°C)              | (38 to 204°C)          | (4 to 204°C)   | (-34 to 149°C) |
| Pressure(2)<br>psi (MPa)   | 10,000<br>(69)        | 9000<br>(62.1)              | 8000<br>(55.2)         | бооо<br>(41.4) | 3000<br>(20.7) |
| Environments               |                       |                             |                        |                |                |
| Salt Water                 | Α                     | A                           | A                      | A              | Α              |
| Steam                      | NR                    | NT                          | В                      | В              | A              |
| Diesel                     | В                     | А                           | В                      | Α              | NR             |
| Hydrochloric<br>Acid (HCl) | NR                    | А                           | А                      | А              | NR             |

A: Satisfactory B: Little or No Effect C: Swells NR: Not RecommendedNT: Not Tested

Note: These materials are mainly used as O-rings.

All pressure tests were done using 6 mil (0.006-in.) gaps; larger radial gaps will reduce pressure rating. Backup rings must be used above 250°F (121.1°C) and 4000 psi (27.6 MPa).

Backup rings must be used above 350°F (176.7°C) and 5000 psi (34.5 MPa).

Water-soluble inhibitors only. Good for O-rings, packer elements, and molded seals.

### **Tubular Devices**

- Tubing
- Landing Nipples (and their associated locks)
- Sliding Sleeves (or sliding side doors)
- Flow Couplings
- Blast Joints
- Crossovers
- Pup Joints

• This are generally all considered to be 'tubular goods'

# Tubing

- Size
- Grade
- Weight
- Threaded Connection

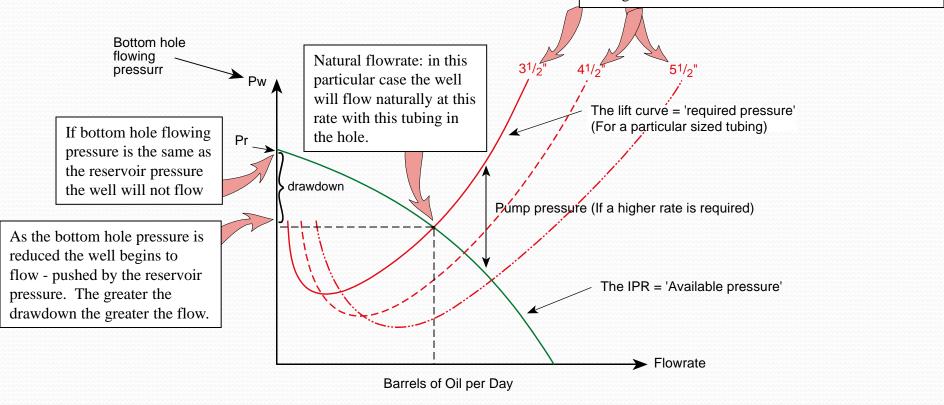
#### **Tubing Performance Curves with Inflow Performance Relationship**

Pressure

TPC's represent a particular tubing design (size and taper) and are constant – They perform well when the IPR curve intersects them (B), and become unstable(C) as the IPR curve passes them. The liquids will not be naturally lifted (D) when the IPR no longer contacts them.

A

Flow Rate


С

#### **Production Rate and Tubing Sizing**

#### The pressure drops are plotted against flowrate to give

- inflow performance relationship or IPR
- the tubing performance curve or lift curve

Tubing Performance Curves: Calculated by computer or taken from tables, to predict the pressure loss up the tubing. Depends upon rate , type of fluid (oil vs gas), gas-oil-ratio, water content etc. for different tubing sizes.



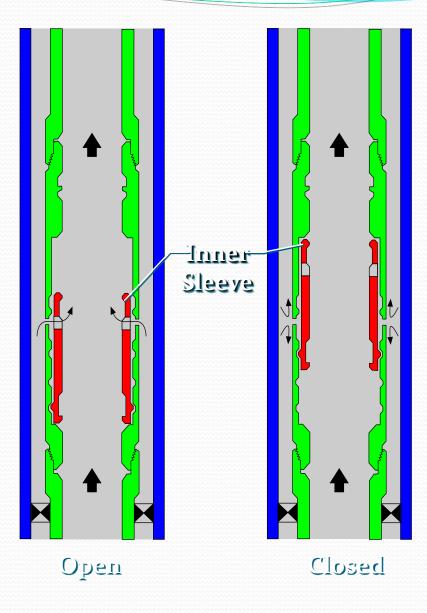
Inflow Performance Relationship (IPR) and tubing Performance Curves

#### API Tubing Table (1 of 4)

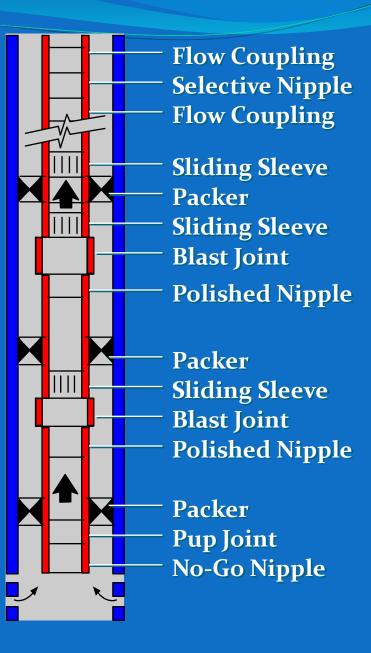
|             |                                                    | Nomin                        | al Weig                      | ht                                           |                                                    |                                                    | Ţ                                         | Threaded                         | d Coupli                                  | ng                    |                                                |                                                  |                                      |                                      |                                                          |                                                                    |
|-------------|----------------------------------------------------|------------------------------|------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------------------|-----------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|
| Tubi        | ng Size                                            | Т&С                          |                              |                                              |                                                    |                                                    |                                           | Coup                             | ling Out                                  | side Di               | <b>.</b> .                                     | Internal                                         | T&C                                  |                                      |                                                          |                                                                    |
| Nom.<br>in. | OD<br>in.                                          | Non-<br>Upset<br>Ib/ft       | T & C<br>Upset<br>lb/ft      | Grade                                        | Wall<br>Thick-<br>ness                             | Inside<br>Dia.<br>in.                              | Drift<br>Dia.<br>in.                      | Non-<br>Upset<br>in.             | Upset<br>Reg.<br>in.                      | Upset<br>Spec.<br>in. | Coll.<br>Resist.<br>psi                        | Yield<br>Press.<br>psi                           | Non-<br>Upset<br>Ib                  | T & C<br>Upset<br>Ib                 | Barrels<br>per<br>lin. ft                                | Lin. ft<br>per<br>Barrel                                           |
| 3⁄4         | 1.050<br>1.050<br>1.050<br>1.050                   | 1.14<br>1.14<br>1.14<br>1.14 | 1.20<br>1.20<br>1.20<br>1.20 | H-40<br>J-55<br>C-75<br>N-80                 | 0.113<br>0.113<br>0.113<br>0.113<br>0.113          | 0.824<br>0.824<br>0.824<br>0.824                   | 0.730<br>0.730<br>0.730<br>0.730<br>0.730 | 1.313<br>1.313<br>1.313<br>1.313 | 1.660<br>1.660<br>1.660<br>1.660          |                       | 7200<br>9370<br>12,250<br>12,970               | 7530<br>10,360<br>14,120<br>15,070               | 6,360<br>8,740<br>11,920<br>12,710   | 13,300<br>18,290<br>24,940<br>26,610 | 0.0007<br>0.0007<br>0.0007<br>0.0007                     | 1516.13<br>1516.13<br>1516.13<br>1516.13                           |
| 1           | 1.315<br>1.315<br>1.315<br>1.315<br>1.315          | 1.70<br>1.70<br>1.70<br>1.70 | 1.80<br>1.80<br>1.80<br>1.80 | H-40<br>J-55<br>C-75<br>N-80                 | 0.133<br>0.133<br>0.133<br>0.133<br>0.133          | 1.049<br>1.049<br>1.049<br>1.049                   | 0.955<br>0.955<br>0.955<br>0.955          | 1.660<br>1.660<br>1.660<br>1.660 | 1.900<br>1.900<br>1.900<br>1.900          |                       | 6820<br>8860<br>11,590<br>12,270               | 7080<br>9730<br>13,270<br>14,160                 | 10,960<br>15,060<br>20,540<br>21,910 | 19,760<br>27,160<br>37,040<br>39,510 | 0.0011<br>0.0011<br>0.0011<br>0.0011                     | 935-49<br>935-49<br>935-49<br>935-49                               |
| 1 1⁄4       | 1.660<br>1.660<br>1.660<br>1.660<br>1.660<br>1.660 | 2.30<br>2.30<br>2.30<br>2.30 | 2.40<br>2.40<br>2.40<br>2.40 | H-40<br>H-40<br>J-55<br>J-55<br>C-75<br>N-80 | 0.125<br>0.140<br>0.125<br>0.140<br>0.140<br>0.140 | 1.410<br>1.380<br>1.410<br>1.380<br>1.380<br>1.380 | 1.286<br>1.286<br>1.286<br>1.286          | 2,065<br>2,065<br>2,065<br>2,065 | 2,200<br>2,200<br>2,200<br>2,200<br>2,200 |                       | 5220<br>5790<br>6790<br>7530<br>9840<br>10,420 | 5270<br>5900<br>7250<br>8120<br>11,070<br>11,810 | 15,530<br>21,360<br>29,120<br>31,060 | 26,740<br>36,770<br>50,140<br>53,480 | 0.0019<br>0.0018<br>0.0019<br>0.0018<br>0.0018<br>0.0018 | 517.79<br>540.55<br>517.79<br>540.55<br>540.55<br>540.55<br>540.55 |

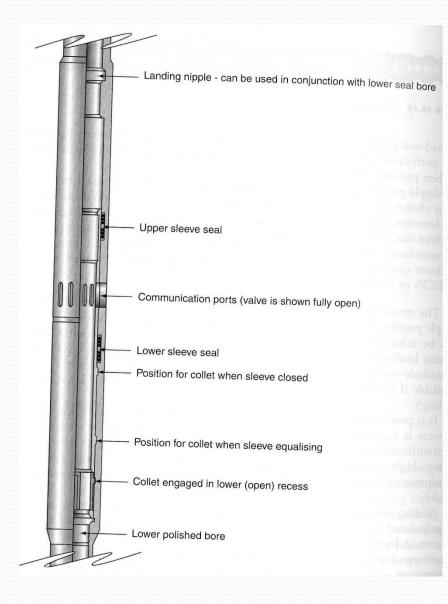
#### **API/SPEC 5A, 5AC, 5AX Tubing and Casing**

|       | Yie     | ld      | Tensile |     |       |
|-------|---------|---------|---------|-----|-------|
| Grade | Min.    | Max.    | Min.    | H₂S | Spec. |
| H-40  | 40,000  | -       | 60,000  | Yes | 5A    |
| J-55  | 55,000  | 80,000  | 75,000  | Yes | 5A    |
| K-55  | 55,000  | 80,000  | 95,000  | Yes | 5A    |
| N-80  | 80,000  | 110,000 | 100,000 | ?   | 5A    |
| C-75  | 75,000  | 90,000  | 95,000  | Yes | 5AC   |
| L-80  | 80,000  | 95,000  | 95,000  | Yes | 5AC   |
| C-95  | 95,000  | 110,000 | 105,000 | ?   | 5AC   |
| P-105 | 105,000 | 135,000 | 120,000 | No  | 5AX   |
| P-110 | 110,000 | 140,000 | 125,000 | No  | 5AX   |


## **Corrosion Resistant Alloys**

| <u>Steel</u>      | <u>Location</u>     | <b><u>Relative Cost</u></b> |
|-------------------|---------------------|-----------------------------|
| Carbon Steel      | Wytch Farm, UK      | 1                           |
| 13%Cr             | S.N.Sea, Trinidad   | 3                           |
| Super 13%Cr       | Rhum, Tuscaloosa    | 5                           |
| Duplex SS Miller, | T. Horse            | 8-10                        |
| Austenitic SS     | Miller, Congo - Lin | ers 12-15                   |
| Nickel Alloys     | Middle East (825)   | 20                          |
| Hastelloy Gulf C  | Of Mexico (G3)      | >20                         |


# Sliding Sleeves/Side Doors


- Device used to allow communication (fluid flow) between the tubing and the tubing-casing annulus
- Typical used for
  - Circulation of the completion
  - Production of zones between packers in multi-reservoir completions

#### Sliding Sleeve



Sliding Sleeve for Multi-Zone Selective Completion





## **Sliding Sleeves/Side Doors**

- Designed to provide flow area equal to, or greater than the ID of the tubing string
- May be jar up to open/down to close, or the opposite

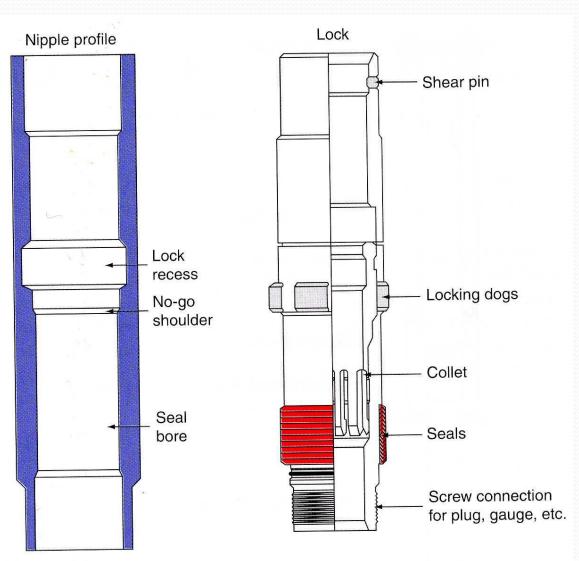


# Bridge Plug

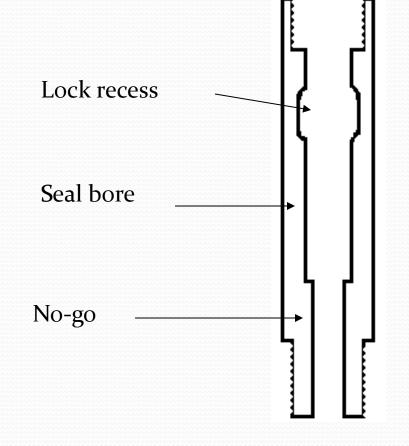
- Device set in the tubing string to close off the tubing
- May be permanent or retrievable
- Harder to set then a wireline plug in a landing nipple (?)



# Landing Nipples

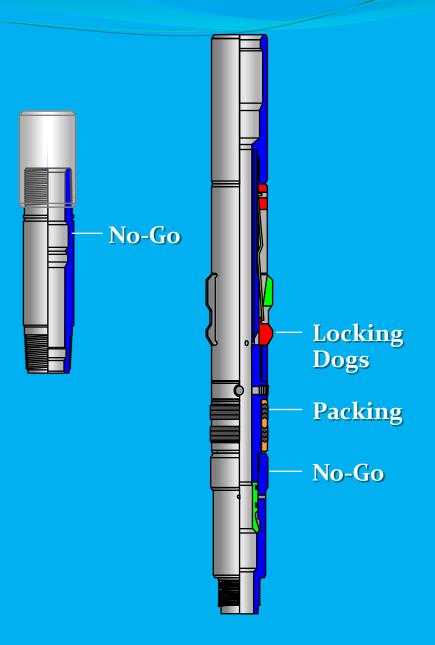

- Short tubular sections that include a groove referred to as a 'profile'
- Used for
  - Setting plugs for pressure testing, isolation and well suspension (e.g. removal of the BOP)
  - Setting check valves (standing valves) for pressure testing
  - Hanging off downhole pressure gauges
  - Setting downhole chokes
  - Positioning an old storm choke

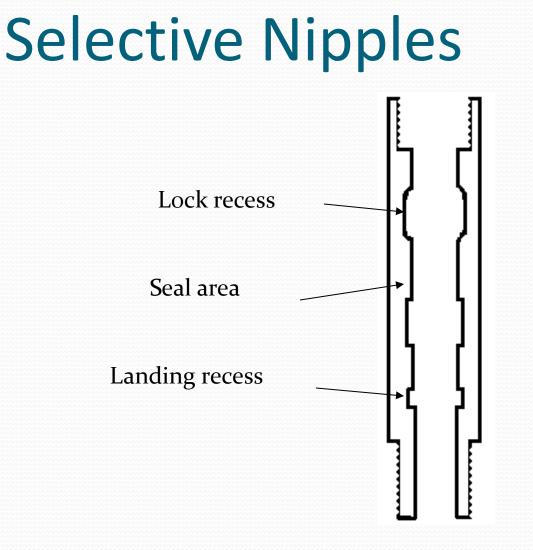
## **Profiles and Nipples**


- Landing Nipple has a specific internal profile.
  - Contains a lock profile
  - Contains a seal profile
- Used for:
  - Checking depth measurement when using wireline and CT
  - Plug well from above or below for testing
  - ScSSV's, DH chokes and regulators may be hung-off
  - DH gauges may be hung-off
  - Installation of pumps, test sections, and other equipment

# Landing Nipple

- No-go type
- Selective type (do not include a no-go)
- No-go's provide positive setting information but restrict ID of tubing if multiple no-go's are used.
- Selective landing nipples do not introduce reductions in diameter but may be more difficult to positively set devices in them

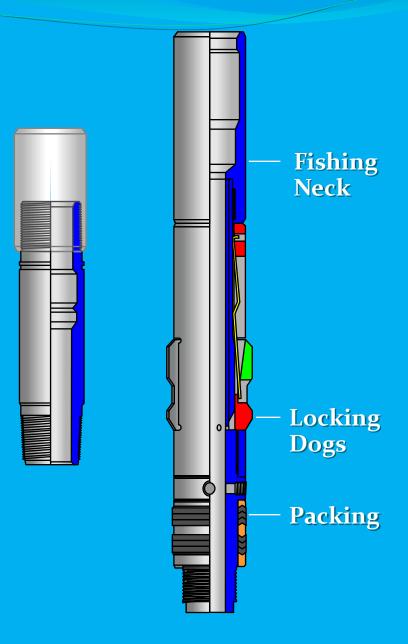




### **Non-Selective Nipples**



A single non selective nipple is usually all that is run in a well and it is usually at the bottom.

### No-Go Landing Nipple and Lock Mandrel



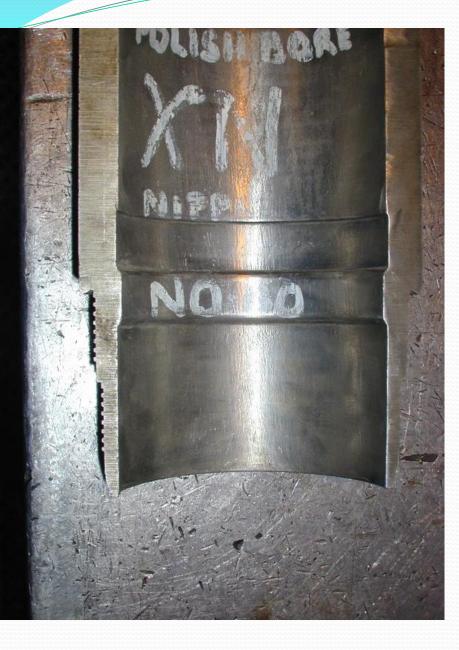



Essentially full opening (about 0.1" less ID than pipe)

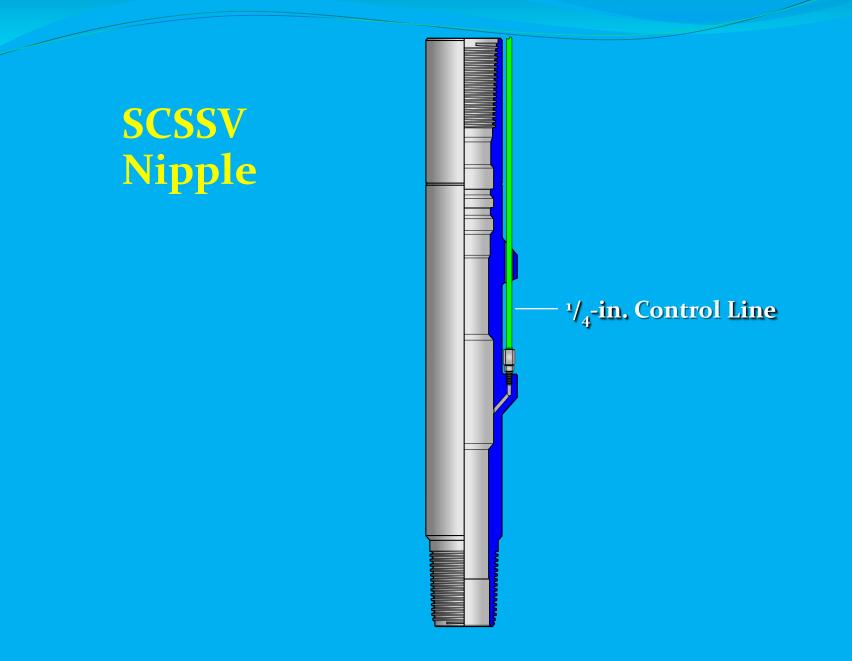
Allows running multiple profiles, each with same ID. Set is determined by running tool.

#### Selective Nipple with Lock Mandrel



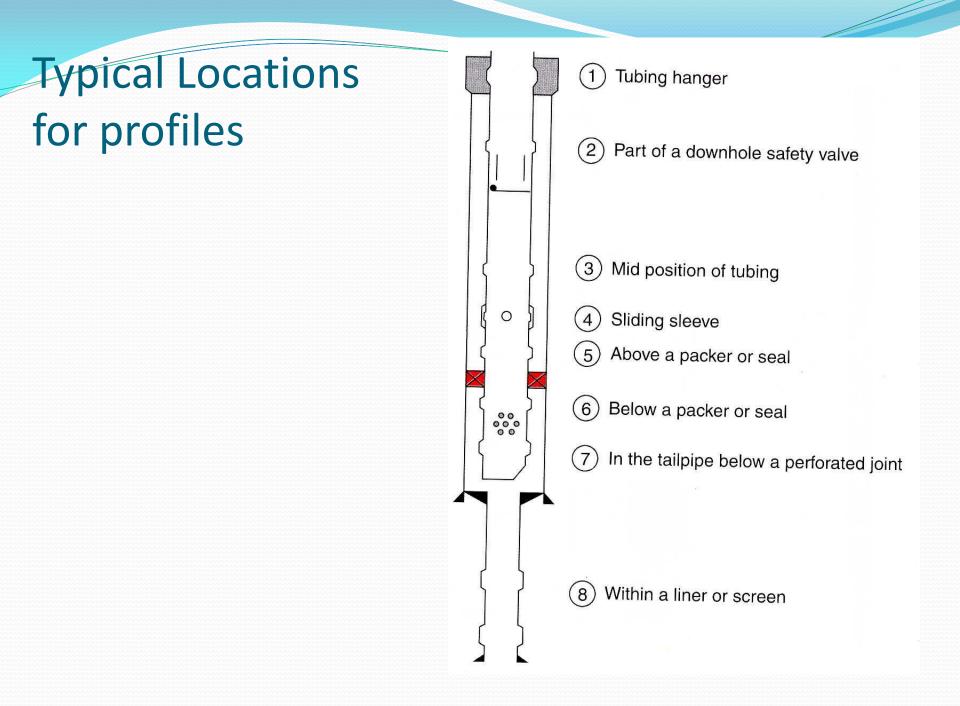



S Profile with plug installed. Showing locking section.




XN (left) and X profile (right). X profiles allow several to be run in series in the string (same size plug passes through each). Only one XN can be run (on the bottom).








### Valve Latched in Safety-Valve Landing Nipple



