Al-Ayen University

College of Petroleum Engineering

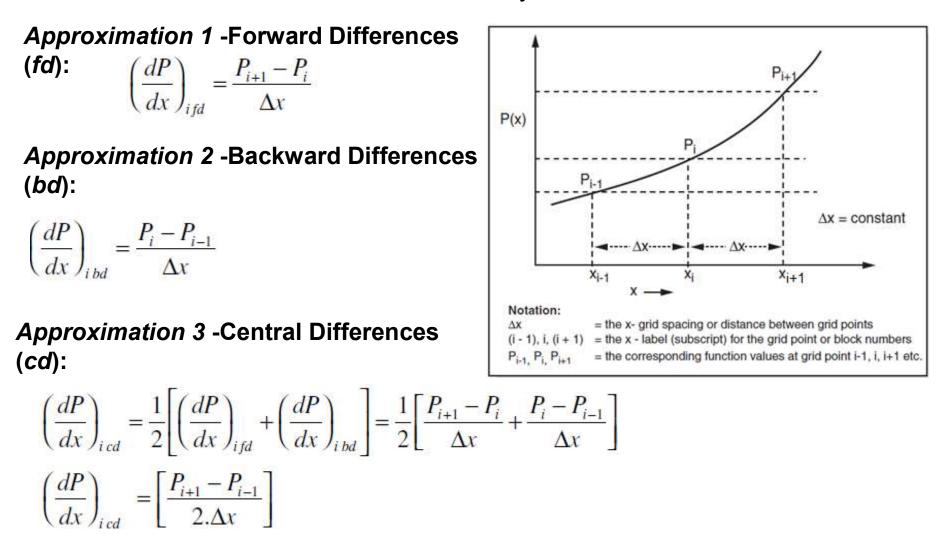
Numerical Methods and Reservoir Simulation

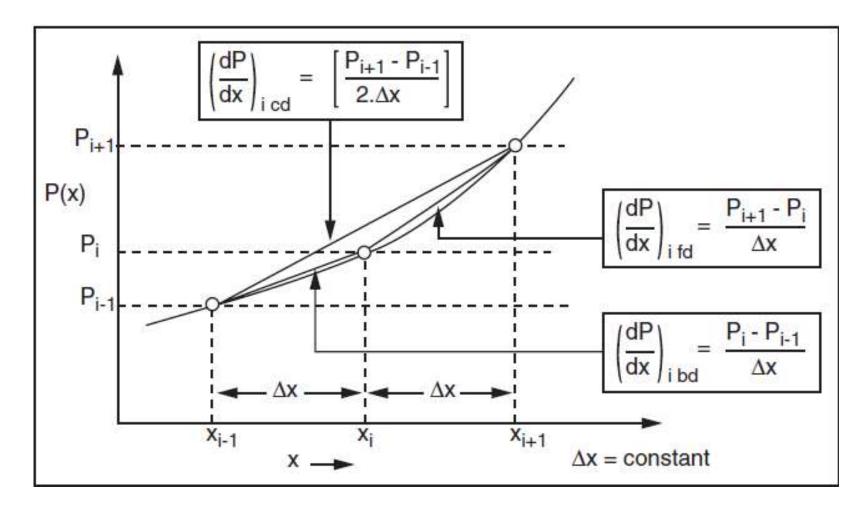
Lecturer: Dr. Mohammed Idrees Al-Mossawy

Lecture 5: Principles of Finite Difference Approximation (Finite Difference Scheme & Discretization)

Finite Differences

Definition: The finite difference scheme is a way of approximating derivatives of a function. There are three ways to do that :





Graphical illustration of the finite difference derivatives calculated by backward differences (*bd*), forward differences (*fd*) and central differences(*cd*).

Now consider the finite difference approximation of the second derivative:

$$\left(\frac{\partial^2 P}{\partial x^2}\right) \approx \frac{\left(\frac{dP}{dx}\right)_{ifd} - \left(\frac{dP}{dx}\right)_{ibd}}{\Delta x}$$

$$\approx \frac{\left(\frac{P_{i+1} - P_i}{\Delta x}\right)_{ifd} - \left(\frac{P_i - P_{i-1}}{\Delta x}\right)_{ibd}}{\Delta x}$$

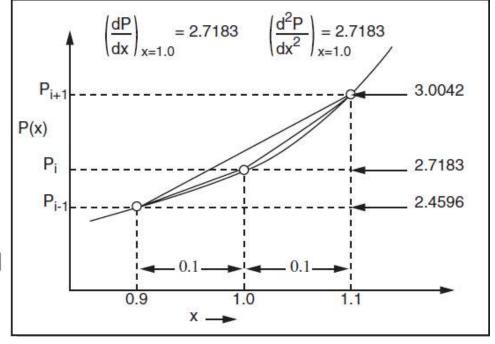
$$\left(\frac{\partial^2 P}{\partial x^2}\right) \approx \frac{\left(P_{i+1} + P_{i-1} - 2P_i\right)}{\Delta x^2}$$

Numerical Example

$$\left(\frac{dP}{dx}\right)_{ifd} \approx \left[\frac{3.0042 - 2.7183}{0.1}\right] = 2.859 \ [err \approx +0.14]$$

$$\left(\frac{dP}{dx}\right)_{i\,bd} \approx \left[\frac{2.7183 - 2.4596}{0.1}\right] = 2.587 \quad [err \approx -0.13]$$

$$\left(\frac{dP}{dx}\right)_{i\,cd} \approx \left[\frac{3.0042 - 2.4596}{2x0.1}\right] = 2.723 \ [err \approx -0.005]$$



A numerical example where the function values and derivative values are known ($P(x) = e^x$)

$$\left(\frac{\partial^2 P}{\partial x^2}\right) \approx \frac{3.0042 + 2.4596 - 2x2.7183}{0.1^2} = 2.7200 \ [err \approx 0.0017]$$

5

Identifying Error of Finite Difference Using Taylor Series

A so-called Taylor series approximation of a function f(x + h) expressed in terms of f(x) and its derivatives f '(x) may be written:

$$f(x+h) = f(x) + \frac{h}{1!}f'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \dots$$

• Applying Taylor series to our pressure function.

Approximation of the second order space derivative

At constant time, *t*, the pressure function may be expanded forward and backwards:

$$P(x + \Delta x, t) = P(x, t) + \frac{\Delta x}{1!} P'(x, t) + \frac{(\Delta x)^2}{2!} P''(x, t) + \frac{(\Delta x)^3}{3!} P'''(x, t) + \dots$$

$$P(x - \Delta x, t) = P(x, t) + \frac{(-\Delta x)}{1!} P'(x, t) + \frac{(-\Delta x)^2}{2!} P''(x, t) + \frac{(-\Delta x)^3}{3!} P'''(x, t) + \dots$$

By adding these two expressions, and solving for the second derivative, we get the following approximation:

$$P''(x,t) = \frac{P(x + \Delta x, t) - 2P(x,t) + P(x + \Delta x, t)}{(\Delta x)^2} + \frac{(\Delta x)^2}{12} P''''(x,t) + \dots$$

$$P''(x,t) = \frac{P(x + \Delta x, t) - 2P(x,t) + P(x + \Delta x, t)}{(\Delta x)^2} + \frac{(\Delta x)^2}{12} P''''(x,t) + \dots$$

or, by employing the grid index system, and using superscript to indicate time level:

$$\left(\frac{\partial^{2} P}{\partial x^{2}}\right)_{i}^{t} = \frac{P_{i+1}^{t} - 2P_{i}^{t} + P_{i-1}^{t}}{(\Delta x)^{2}} + O(\Delta x^{2})$$

- Here, the rest of the terms from the Taylor series expansion are collectively denoted $O(\Delta x^2)$ thus denoting that they are in order of, or proportional in size to Δx^2
- This error term is called *discretization error (or truncation error)*, which in this case is of second order, is neglected in the numerical solution.
- The smaller the grid blocks used, the smaller will be the error involved.
- Any time level could be used in the expansions above.

$$(\frac{\partial^2 P}{\partial x^2})_i^{t+\Delta t} = \frac{P_{i+1}^{t+\Delta t} - 2P_i^{t+\Delta t} + P_{i-1}^{t+\Delta t}}{(\Delta x)^2} + O(\Delta x^2)$$
$$(\frac{\partial^2 P}{\partial x^2})_i^{t+\frac{\Delta t}{2}} = \frac{P_{i+1}^{t+\frac{\Delta t}{2}} - 2P_i^{t+\frac{\Delta t}{2}} + P_{i-1}^{t+\frac{\Delta t}{2}}}{(\Delta x)^2} + O(\Delta x^2)$$

7

Approximation of the time derivative

At constant position, x, the pressure function may be expanded in forward direction in regard to time:

$$P(x, t + \Delta t) = P(x, t) + \frac{\Delta t}{1!} P'(x, t) + \frac{(\Delta t)^2}{2!} P''(x, t) + \frac{(\Delta t)^3}{3!} P'''(x, t) + \dots$$

By solving for the first derivative, we get the following approximation:

$$P'(x,t) = \frac{P(x,t+\Delta t) - P(x,t)}{\Delta t} - \frac{(\Delta t)}{2} P''(x,t) - \dots$$

or, employing the index system:

$$\left(\frac{\partial P}{\partial t}\right)_{i}^{t} = \frac{P_{i}^{t+\Delta t} - P_{i}^{t}}{\Delta t} + O(\Delta t) \,.$$

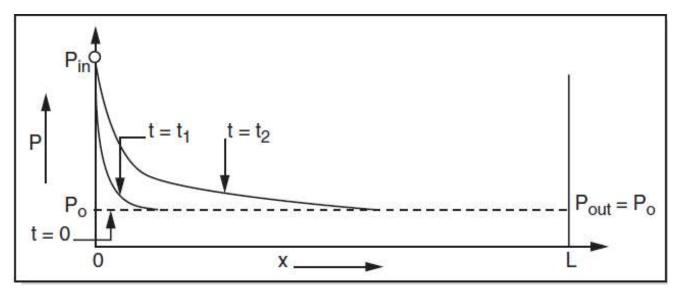
- Here, the error term is proportional to Δt , or of the first order.
- The error therefore approaches zero slower in this case than for the second order term $O(\Delta x^2)$.

Application of Finite Differences to Partial Differential Equations (PDEs)

As an example of PDE, we will take the simplified pressure equation:

$$\frac{\partial^2 p}{\partial x^2} = \frac{1}{\eta} \frac{\partial p}{\partial t} \qquad \text{(1), where} \qquad \eta = \frac{k}{\phi c_t \mu}$$

This is the pressure equation for a 1D system where $0 \le x \le L$, where L is the length of the system. After the system is held constant at P = Po, the inlet pressure is raised (at x = 0) instantly to P = Pin while the outlet pressure is held at Pout = Po.



Explicit Finite Difference Approximation of the Linear Pressure Equation

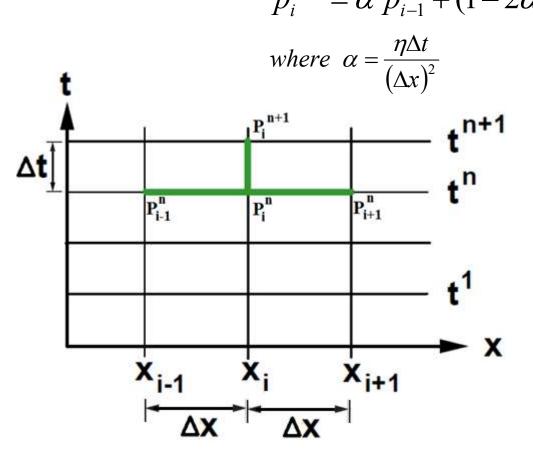
PDE:
$$\frac{\partial^2 p}{\partial x^2} = \frac{1}{\eta} \frac{\partial p}{\partial t}$$
 ------(1)

 \succ apply finite differences to equation 1 to obtain:

Substituting equations 2 and 3 in equation 1 gives:

Explicit Finite Difference
$$\frac{p_{i+1}^n - 2p_i^n + p_{i-1}^n}{(\Delta x)^2} = \frac{1}{\eta} \left(\frac{p_i^{n+1} - p_i^n}{\Delta t} \right) \quad ------ (4)$$

Rearrange equation 4 to obtain an **explicit expression** for, p_i^{n+1} , the only unknown in equation 4: $p_i^{n+1} = \alpha \ p_{i-1}^n + (1-2\alpha) p_i^n + \alpha \ p_{i+1}^n$ ------(5)



Schematic of the explicit finite difference algorithm for solving the simple PDE.

Implicit Finite Difference Approximation of the Linear Pressure Equation

We now return to the original PDE

The finite difference equation for this case is as follows:

The time derivative is the same as for the explicit finite difference , i.e.

but the spatial derivative of equation 3 (Part 1) now becomes:

12

Substituting equations 2 and 6 in equation 1 gives:

 $\Delta \mathbf{x}$

 $\Delta \mathbf{x}$

Implicit Finite Difference
$$\frac{p_{i+1}^{n+1} - 2p_i^{n+1} + p_{i-1}^{n+1}}{(\Delta x)^2} = \frac{1}{\eta} \left(\frac{p_i^{n+1} - p_i^n}{\Delta t} \right) \quad ------ (7)$$

There are three unknowns for each *i*; p_{i-1}^{n+1} , p_i^{n+1} , and p_{i+1}^{n+1} . Equation 7 can be rearranged as:

Discretization

- Converts continuous PDEs into difference form
- Replaces original problem with other problem in terms of algebraic equation which can be solved "easily"
- The reservoir (spatial) domain is represented by spatially distributed, interconnected discrete elements (*grid blocks*)
- Temporal (time) domain is also discretized (*time steps*).

THANK YOU