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Finite Differences

Definition: The finite difference scheme is a way of approximating
derivatives of a function. There are three ways to do that :

Approximation 1 -Forward Differences
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Graphical illustration of the finite difference derivatives
calculated by backward differences (bd), forward differences
(fd) and central differences(cd) .




* Now consider the finite difference approximation of the
second derivative:
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Numerical Example
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A numerical example where the
function values and derivative values

are known (P(x) = eX)

= —=2.7200 [err = 0.0017]




Identifying Error of Finite Difference Using Taylor Series

* A so-called Taylor series approximation of a function f{ x + 4) expressed in terms of
flx)and its derivatives f ‘ ( x) may be written:
3
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* Applying Taylor series to our pressure function.

Approximation of the second order space derivative

At constant time, ¢, the pressure function may be expanded forward and backwards:
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By adding these two expressions, and solving for the second derivative, we get the
following approximation:
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P(x + Ax,t) =2 P(x.,t)+ P(x + Ax,t) N (Ax)?
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or, by employing the grid index system, and using superscript to indicate time level:

P’(x.t)= P (x,0)+ ...
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Here, the rest of the terms from the Taylor series expansion are collectively denoted O(Ax” )
thus denoting that they are in order of, or proportional in size to Ax~

This error term is called discretization error (or truncation error) , which in this case
is of second order, is neglected in the numerical solution.

The smaller the grid blocks used, the smaller will be the error involved.

Any time level could be used in the expansions above.
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Approximation of the time derivative

At constant position, x, the pressure function may be expanded in forward direction in
regard to time:

At Ar) Ar)’
P(x,t +At)=P(x, 1) + TP’(x, 1)+ %P” (x, 1) + %P”’(x, 1)+.....

By solving for the first derivative, we get the following approximation:

Px)= 2L +A2_P(x’t) = (Azt) P/ (xt)—....

or, employing the index system:
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* Here, the error term is proportional to A7, or of the first order.

* The error therefore approaches zero slower in this case than for the second order
term O(Ax™).



Application of Finite Differences to Partial
Differential Equations (PDEs)

As an example of PDE, we will take the simplified pressure equation:
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This is the pressure equation for a 1D system where 0 < x <L, where L is
the length of the system. After the system is held constant at P = Po, the

inlet pressure is raised (at x = 0) instantly to P = Pin while the outlet
pressure is held at Pout = Po.




Explicit Finite Difference Approximation of the

Linear Pressure Equation
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Substituting equations 2 and 3 in equation 1 gives:
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Rearrange equation 4 to obtain an explicit expression for, pf . , the only
unknown in equation 4:
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Implicit Finite Difference Approximation of the
Linear Pressure Equation

We now return to the original PDE
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The finite difference equation for this case is as follows:

The time derivative is the same as for the explicit finite difference , i.e.
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but the spatial derivative of equation 3 (Part 1) now becomes:
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Substituting equations 2 and 6 in equation 1 gives:
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There are three unknowns for each i; p.,"*1, p/*1, and p;,,"*1. Equation 7
can be rearranged as:
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Discretization

 Converts continuous PDEs into difference form

* Replaces original problem with other problem
In terms of algebraic equation which can be
solved “easily”

* The reservoir (spatial) domain is represented
by spatially distributed, interconnected discrete
elements (grid blocks)

« Temporal (time) domain is also discretized
(time steps).
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