Types of Well Completion Designs Lecture 4

Completion Classifications

- There are a number of way of describing or 'classifying' completions
 - Location land, subsea, platform, etc.
 - Basic design of the <u>lower completion</u> open hole, cased & perforated, slotted liner, gravel pack
 - Lift requirements selective for flowing well; rod pump or gas lift (etc) for lifted well
 - Geometry vertical, deviated, horizontal, multilateral
 - Control intelligent well
 - Number of tubing strings single, dual

Openhole Completion

The openhole method call for production casing to be set above the zone of interest and prior to drilling same.

The well is completed with the producing interval open to the wellbore.

Openhole Completion

Advantages

- Elimination of perforating expense
- Maximum wellbore diameter opposite pay
- Easy to deepen well at a later time
- Easily converted to a screen and liner or perforated liner completion
- Depending on skin value, openhole completions theoretically provide ideal inflow capability

Disadvantages

- Excessive gas or water production difficult to control
- Must run production casing before drilling zone
- Producing interval cannot be selectively stimulated or produced
- Open hole section may require frequent cleanout

Predrilled or Preslotted Liners

- Stop gross hole collapse
- Allow zonal Isolation packers to be deployed within the reservoir completion for upfront or later isolation
- Allow the deployment of intervention tools strings such as production logs (PLTs). Interpreting such logs can be difficult in high-angle wells.

Predrilled/Slotted Liners

- Not normally a form of sand control as it is hard to make slots small enough to stop sand. If sufficiently small they are susceptible to plugging. Exceptions are use of slotted liners for steam assisted gravity drainage (SAGD).
- Pre-drilled liners are generally favored over pre-slotted as they have a much larger flow area and are stronger. Pressure drops through holes and plugging are far less a concern.
- A pre-drilled or pre-slotted liner can be installed with or without a washpipe and is similar to the deployment of a stand-alone screen.
- Without the requirement for sand control, the liner is usually installed in mud. The whole mud and filter cake is then produced through the liner.
- The washpipe is then relegated to contingency in case circulation is required to remove cuttings or other debris from the frong of the liner. It can also be used to set ECPs, displace solutions for the dissolution of the filter cake, etc.

Liner Completions

In a liner completion, casing is set above the zone and a liner is installed across the pay section.

The liner could be a screen or perforated pipe.

SCREEN AND LINER COMPLETION

Liner Completions

Advantages

- Same as openhole except that the design is adaptable to sand control techniques
- Cleanout problems are avoided

Disadvantages

- Same as openhole (e.g. no selective production or stimulation over interval)
- Well diameter across the pay is reduced and the well cannot be easily deepened

Standalone Screens (SAS)

- Used extensively throughout the world for sand control applications
- Low cost, easy to install but prone to plugging and other failures
- Can be wire-wrapped, pre-packed or premium screens (discussed later in sand control)

Zonal Isolation – ECP

- External Casing Packer (ECP) are inflatable packers used to isolate zones in openholes.
- The are run in pre-determined positions, often in conjunction with liner screens. Also run on tubing for stimulation of multiple zones.
- ECPs set from the bottom up via a washpipe. Used to be inflated with mud but can be inflated with cement, too.

Swelleable Elastomer Packers

- Recent development in packers. The swelling takes advantage of a property of elastomers the previously was a limitation – swelling in the presence of oil or water.
- Main advantages over the ECP is cost and simplicity.
- With small clearances can hold up to 4000 psi.
- Swellable elastomers do take time to reach full expansion – normally around 7 days. So these packers are harder to test for pressure integrity than an ECP.

Cemented and Perforated Liner Completion

In a cemented liner the casing is set above the zone, the pay is drilled, and liner casing is cemented in place.

The liner is then selectively perforated for production.

PERFORATED LINER COMPLETION

Cemented & Perforated Liner

Advantages

- Excessive gas or water production is more easily prevented or controlled
- Formation can be selectively stimulated
- Liner impedes sand influx, but adaptable to sand control techniques
- Well can be easily deepened
- Disadvantages
 - Liner cementing can be more difficult than cementing primary casing
 - Additional cost of perforating, cementing, rig time

Cased and Perforated Completion

Production casing is cemented through the producing zone and the pay section is selectively completed.

Cased & Perforated Completions

Advantages

- Excessive gas or water more easily prevented or controlled
- Formation can be selectively stimulated
- Well can easily be deepened
- Casing will impede some sand influx
- Completion adaptable to sand control
- Full diameter through the pay section
- Logs available to pick casing point
- Adaptable to all multiple completion configurations
- Improved primary cementing (compared to liner)
- Minimum rig time and logging expense
- Disadvantages
 - Perforating costs can be high
 - Log interpretation critical
 - Usually greater formation damage in pay section

Flowing Cased & Perforated Completion

Flowing Well with Tubing

Flow up both the tubing and casing strings.

This design is only for wells capable of very high flowrates.

Landing nipple (no go) at bottom of tubing allows for tubing to be pressure tested

Tubing can be used as a kill string

Flowing Single Completion

Both tubing and production packer are installed. Tubing restricts flow rates (compared to flowing up casing).

Packer installation may required for casing protection or barrier to flow. The 'no go' nipple can be used for a bottomhole choke, regulator or safety valve (storm choke).

The flow coupling is positioned to protect the landing nipple from erosion and the circulating sleeve is used to displace the tubing to a low density fluid after installation of the tree.

Single Completion – High Rate, Low Pressure

The production packer and safety valve are installed at some shallow depth in the well. Flow proceeds up the tubing and annulus to a point below the packer, enters the tubing through a ported nipple, flow through the packer and valve and then again continues up both the tubing and annulus by means of a second ported nipple.

SINGLE COMPLETION - HIGH RATE, LOW PRESSURE FLOWING WELL

Single Selective Completion

The alternate zone is perforated on initial completion, but isolated between packers. It is placed on production when the lower zone is depleted by shifting the sliding sleeve or perforating the tubing opposite the zone

A blast joint is run opposite the zone between packers to delay tubing failure due to erosion

SINGLE WELL WITH ALTERNATE COMPLETION

Dual Zones with a Single String Completion

Most basic dual configuration. Production of the lower zone is up the tubing and upper zone flow is up the casing-tubing annulus.

Primary advantage is reduced cost.

Disadvantages are that it is difficult to artificially lift upper zone; casing is exposed to reservoir fluids; and the lower zone must be killed to workover the upper zone.

Two Zones Tubing/Casing Crossover

With this design it is possible to produce either zone up the tubing by utilization of a crossover or regular flow choke.

This technique retains the disadvantages of casing exposure, plus inability to workover the upper zone without killing the lower zone.

Does permit selectivity as to which zone is produced up the annulus.

TWO ZONES TWO PACKERS – SINGLE TUBING STRING TUBING/CASING CROSS-OVER DUAL COMPLETION

Single String, Dual Zone Completion

Downhole choke regulates flow from uppermost zone

TWO ZONES IN ONE TUBING STRING - SIMULTANEOUS PRORATED FLOW DUAL COMPLETION

Dual Completion

Dual completion with two tubing strings. Production from lower reservoir is through the 'long string' and the upper reservoir flows to the 'short string'.

Production packers separate zones.

Casing is protected from reservoir fluids. Production from each zone is measured separately.

Workovers of dual expensive and they are more difficulty to install.

Dual Completion Multiple Zones

DUAL WELL WITH TWO ALTERNATE COMPLETIONS

Triple Completion

Extra String for Chemical Injection

SINGLE COMPLETION WITH EXTRA TUBING STRING FOR CHEMICAL INJECTION

Velocity or Kill String

A small, concentric 'kill string' is used to circulate kill fluids to kill the well when required.

This design can also be used in wells to keep them from dying. In this case the inner tube is referred to as a velocity string.

SINGLE COMPLETION WITH CONCENTRIC HIGH PRESSURE KILL STRING

Single String Gas Lift Completion

Side pocket mandrels are added in the tubing string above a packer.

Gas is injected into the tubingcasing annulus and enters the tubing through special valves inserted into the mandrels.

The gas reduces the density of the fluid in the tubing string cause the well to flow.

Sucker Rod Pump Completion

Rod string is run inside tubing.

Pump barrel typically part of tubing but can also be an 'insert'.

Tubing anchor attaches tubing to casing wall thereby eliminating tubing stretch during the pumping cycle.

Tubingless

Tubing cemented and serves as both casing and tubing.

Poor protection of the annulus if leak develops in pipe above level of bottom cement.

SINGLE TUBINGLESS COMPLETION – FLOWING WELL –

Tubingless Completion

Reduced diameter 'macaroni tubing' used inside tubing string which is cemented in the hole.

Reduced diameter completions represent an attempt by the industry to lower completion investment costs.

Often, drilling costs may be higher initially so it may take multiple completions before cost savings can be realized.

VARIOUS DESIGN POSSIBILITIES FOR TUBINGLESS COMPLETIONS

Tubingless Completion

Same idea only worse. Triple completion with three tubes.

This requires careful orientation of the perforation jobs (all must be 0 phased)

TRIPLE TUBINGLESS COMPLETION

Single String

Single string completion with the ability to remove the tubing at the point of the tubing seal receptacle.

This design has a permanent packer (you can tell because there is a mill out extension in the design).

Dual Zones

Permanent packer with tailpipe on bottom. Allows lower zone to be shut off with wireline plug while still producing upper zone.

Can remove tubing at the tubing seal receptacle as in previous design, leaving plug in tailpipe of upper zone.

So, this is a selective completion in the sense that you can shut off the lower zone and produce upper only. But you cannot produce the lower only.

Just another schematic of a single selective completion

Dual Completion, 2 zones

As before, two tubing strings. Long string generally uses a permanent packer with a tailpipe, then a dual bore retrievable packer is used up hole. Long string tubing stabs into permanent packer.

Dual Completion, 3 zones

Multiple Dual

Same as previous design except now there are more sliding sleeves

Gas Lift Completion

Always requires a packer

Gas lift valves are used in side pocket mandrels

This design utilizes a stab over tubing seal receptacle, permanent packer with tailpipe

An example electrical submersible pump completion above a bottom zone that has been sealed off by a bridge plug and cement

Flowing well completion.

Liner with polished bore receptacle (PBR). Packer with landing nipple in liner to allow lower zone to be shut off with plug.

Packer with stab in seal stack and polished bore set in top of liner.

Tubing with locator seals stabbed into packer.

JE FIELD VYLLE CONTINUE LE LIGIT ELCONTRIEN

30a Cont. WITH WIRELINE ADAPTOR

: OIL PRODUCER

0.000 0175 als a 0.00

ZE: 91". 43.516/ft, N80 LTC TUBING SIZE: 41". 12.616/ft. N80 WAN

Typical completion running tally showing equipment item, description, threads, ID, OD, length and setting depth.

ASSEMBLY	ITEM	THREADS	1.D. (ins.)	0.D. (ins.)	Length (ft.)	Depth (ft.)	
: 1	0					.844 a .15	
1	Pup joint, 12.61b/ft, N80	43" Vam box x pin	3.958	4.862	6.03	8447.16	
	Baker now coupling.	44" Vam box x pin	3.958	5.563	16.07	2453.19	
10.00	Camce 41" DB nipple for NO-GO DB leck 12.61b/ft (assy no. 10255)	4]" Vam box x pin	3,958	4.862	NO-6	0 8459.26	
	Baker now coupling	44" Vam box x pin	3.958	15.563	16.06	8460.30	
No 1 or 2 Cable AWG	Camce 41" Aut-1 adjustable union (22" max extension)	44" Vam box x pin	4.000	5.563	5.09	8466.42	
	Pup joint, 12.51b/ft, N8C	4 ¹ " Vam box x pin	3. 958	4.862	5.81	8471.51	
	Prodn tubing/pup joints for space out of motor lead extension cable 12.61b/ft, NBC	44" Vam box x pin	3.958	4.862	103.44	8477.32	
A',	Pup joint, 12.615/ft. NBC	'4 [‡] " Vam box x pin	3.958	12.862 4	-4.961? 3.86	8580.76	
E EX	baker flow coupling	44"Vam box x pin	B.958	5.563	4.03	8584.62	
	X-over	44" Vam. box x	2.992	4.862 ³	1.80	8588.05	
	Pup joint 9.315/fi. N80	34" EUE 8RD box x JIE	2.992	3.500	4.96	8590.01	
	Wireline adaptor tool c/w wireline retrievable plug. Permits production legging with pump running. 2.272" ID landing nipple for 1.75" external finance to	34" EUE SRD box x 34" EUE SRD pin (RH 24" Vam pin (LHS)	5) 2.272	8.450	in the	pe inte	
2 P/J	neck Monarch plug.			-	2.35	8594.97	
	Pup joint 9.316/ft. NBC .21	. 34' EUE BRL	2.992	3.500	1.58	8597.3	
6-4 lb/tt Vam Tubing	Pup joint 9.31b/fi, N80 (10')	3 [‡] " EUE SRD box x pin	2.992	3.500	390 807	8598.9	
Joints with adjust -	X-over 9.31b/ft, NB0	31" EUE 8RD box x 21" EUE 8RD pin	2.992 1.995	3.5	1-34	8610.37	
union & wireline entry	Centrilift 513 series KA100. E127 or 5175 pump	23" EUE SRD box		5.13	25.91	8636.72	
guid. (See sep- arate drawing for de- tails)	Centrilift seal section, 513 series type GSBP.			5.13	6.31	8643.0	
2-075" 00	Centrillf: 544 series GMP motor.			5	29.60	8672.6	
2:44 10 / · · · · · · · · · · · · · · · · · ·	350HP for \$175					(DIFFE	
29 lb/tt. N-80 T P	J. erforations	TT I				MUSIN CHONO BELOW	

WELL 11/30a

TYPE: OIL PRODUCER

CASING SIZE: 91". 43.5 16/4. N80, LTC TUBING SIZE: 41", 12.6 16/4. N80

Length Depth I.D. O.D. ASSEMBLY ITEM THREADS ins.) (ins.) (ft.) (ft.) McIvoy SLA-3 hanger. 10" 1.6 bow! with 44"Vam female top 4" Wam box x and bottom. Female top with 3.958 2" nom ClW type H BPV threads -1" Vam box 0.40 59.00 to accept 2-way eneck valve 1 Sets play for the 1 siggirical penetrator and t" Q/L Single joint of tubing 12.6 lb/ft, N80 4" Vam box x pin 3.958 4.862 27.19 59.40 Prodn tubing string. 44" Vam box x pin 4.862 3.958 12.6 lb/ft. N80 936.74 86.59 1/4" SS 3.958 4.862 Pup joint 12.51b/ft, N80 41" Vam box x pin C/Line 6.12 1023.38 Baker flow coupling (4') 3.958 5.563 44" Vam box x pin 4.05 1029.15 Camco 4t" BA -6 SCSSSV landing nippie with 4" B-ó pack-off. 44" Vam box x pin 3.813 5.598 NO: 60 н 12.0 15/ft (assy No. 10254) 2.26 1033. wo Special Baker fice southing in KE 3.958 -!" Wam box x pin 15.563 Cable 6.07 1035.74 Protect Per 3.958 4.862 Put joint 12.6 lb/ft. N80 Li" Vam box x pin 6.09 1041.83 Joint Proan tubing string 41" Vam box x pin 3.958 4.862 12.5 1b/ft, N80 1047.92 7261.09 3.958 1 4.861 Pup join: 12.615/ft. NSC -t Vam box x pin 5.33 8309.0 No I Cane AWG Cames uf MMG sice pocket \$/16 mandrel with SLAR snear but -t" Vam box x box 3.89 7.031 E 8.86 83 14.34 valve and RKF laten Instrum SCanle 5.19 8313.2 4.862 Pup seint 12.615/ft. NBC it" Wam pin x pin 3.955 Predn tubing (1 stand -2er3 41" Vam bex x pin 3.958 4.862 101215 88.50 8328.3 12.61b/ft. N80 4.362 3.958 Pur joint 12.615/ft. NSO 11" Vam box x pin 6.05 84 0.8 Camco 41" type DB-1 sliding | sleeve with 3.067" DB landing 4" Vam box x pin 3.657 5.500 NO-60 nipple for DB Look No.10260 5.55 842294 Pup joint 11.615/ft. N8C (10) 1" Vam box x pin 3.958 1.362 11.14 84:8.4 -Guise or Brown quai hydrauiig set straight puil release 4" Vam box x pin packer. J/w electrical penetrator for pump and penetrator for Flopetrol DPTT gauge (gauge Brown pkr : 125 A D penetrator 4.52 8437.63 4.000 8.:30 mounted above packer). Cus pkr : 115 A Brown pkr : BlW penetrator penetrater MID Otis pkr : Slingsby penetrator PACKER (see electrical diagram for details) .41" Vam box x pin 3.958 4.962 Pup. joint, 12.510/ft, N80 3.01 8444.15

Bottom part of previous tally.

Depths won't be available until completion is run in the well.

From the Ninian Field North Sea.

Another example of how the completion diagram may be made.

	WELL C 41 COMPLETION			Lower Reservoir Producer		
	SI	SLOT 24				
	ITEM	<u>MIN. I.D</u> .	DEPTH	NOTES		
	FLOW COUPLING OTIS TRBV FLOW COUPLING	4 · 778" 4 · 562" 4 · 778"	698' 704' 712'	No.208 SERIES IO		
	FLOW COUPLING OTIS XN L/N FLOW COUPLING	4 · 394" 4 · 157"NO-GO 4 · 394"	472' 476' 477'	Pack Bore 4.313"		
M M	ELTSR BAKER SAB X/O TO 4 ^{1/} 2"	4 · 857" 4 · 760" 3 · 976"	547' 592' 602'	đ		
	FLOW COUPLING SLIDING SLEEVE FLOW COUPLING	3 · 895 " 3 · 813 " 3 · 895 "	11740' 11746' 11750'	OTIS XD		
34 0	BAKER PACKER	-	11774	FB-1 (G36 LOCATR. with 6 seals		
	FLOW COUPLING OTIS RN L/N FLOW COUPLING	3 · 895" 3 · 456" №-60 3 · 895"	11810' 11816' 11818'	Pack Bore 3.688"		
	FLOW COUPLING SLIDING SLEEVE FLOW COUPLING	3 · 895 " 3 · 313 " 3 · 895" ,	11840' 11845' 11849'	OTIS XD		
∃‡ 89 1	BAKER PACKER	-	11 874	FB-1 (E36 LOCTR.with 14'sects)		
	FLOW COUPLING OTIS RN L/N MULE SHOE	3 · 895" 2·907 "NO-GO 3 · 993 "	11882 11888 11889	Pack Bore 3 · 125"		
	REF: FDC/CNL FILE 26 <u>PERFORATIONS</u> 11642'- 653' 11663'- 669' 11681'- 698' 11737'- 761' 11737'- 865' 11876'- 895' 11940'- 970'	ZONE 以A 以A 以A 別A 別 王 王		REPERFORATED 8/84 W 4" CASING GUNS		
	PBTD 12045	6·184 "	12045'	W.D. (SCHL.)		
THEE NO. ME182 620' (ML) 180' (MSL 63' (THF DEVIATION 46° (MAX 30° AT T	CASING <u>9</u> / <u>4</u> <u>308</u> JTS TUBING <u>5</u> / <u>4</u> <u>4</u> JTS TUBING <u>4/<u>2</u> <u>1</u> COMPLETED ()AT 5191' P.O. P. <u>D</u> STATUS AS</u>	GRADE N 8 " GRADE <u>N 8</u> " GRADE <u>L 8</u> <u>23·3</u> <u>24·3</u> OF WO 'E' <u>6</u>	80 WEIGHT 80 WEIGHT 80 WEIGHT 82 82 5-9-85	47/435 PPF SET AT 12085" 17 PPF 12:6 PPF		

Example completion schematic and equipment detail from the Balmoral Field in the North Sea.

This is a gravel pack completion (for sand control).

This was also an early subsea completion (meaning the tree is on the seafloor)

WEI	LL PROFILE						
STATUS		WELL 16/218-B4 RIG PACESETTER					-
1.71 75	7577	FIELD	SIZE	9-5/8	7-5/8	3-1/2	
TRN IN T		COUNTRY U.K. NORTH SEA	WEIGHT	47	33.7	9.3	
AORE	36 PXN	S. ROBERTSON	GRADE	NBO	N80	LBO	
	35 PROD	DATE 16th APRIL 1986	THREAD	BTC	BTC	HCS	
34		□ New Completion ■ Re-Entry No.1	DEPTH	010.98	11499	10914	
CLOSED 33	32	Injector Producer					
*		No. EQUIPMENT		ID (IN)	O D (IN)	(FT)	TOP OF
10:146 . 31		37 VETCO PRODUCTION TBG. HC	R. 9 (SER	NO. A	B-1688	330-3)	MD(RF
in the		-ABOVE LANDING SHOULDER				2.38	550.
1.5		-BELOW LANDING SHOULDER	-			0.79	552.
		SO ONE ST. S-172 , 9.310/11 HUS	IBG	2.92	3.0	30.23	653.
6	27-57 ³⁰	25 B ITS alve 2 DUD ITS 2 4101	0 15 /15	1000			
F	28	35 8 J15 Plus 3 POP J15 3-1/2 E	1.3 ID/Π	2.92	3.5	263.80	583.1
	OIL AND			-			
	27 GAS IN	34 FLOW COUPLING		2.93	3.85	8.10	847.5
	TUBING	33 CAMCO 3-1/2 THDP-2AH-SS	A-NS with	2.75	5.70	9.45	853.
DUMMY	2 PLOW	2.75 C TYPE NO-GO LOCK	(SERIAL N	IO BBS	118)		
VALVE	25 COUPLIN	6 32 FLOW COUPLING	0 315/1	2.93	3.85	6.08	863.
		31 20 JTS plus 2 PUP JTS 3-1/2"	HCS TBG	2.92	3.5	634.92	869.
	24	30 FLOW COUPLING		2.93	3.85	6.10	1504.
	23	29 OTIS 2.75 "X" LANDING NIPPI	LE	2.75	3.85	0.95	1510.
	22)	28 FLOW COUPLING	0 815 76	2.93	3.85	6.08	1511.
TALVE		27 60 JTS plus 2 PUP JTS 3-1/2".	HCS TBG	2.92	3.5 1	881.55	1517.
1	21	26 FLOW COUPLING		2.93	3.85	5.99	3398.
1		25 CAMCO MMG SPM with DUMM	Y VALVE	2.90	5.97	8.49	3404.
DUMMY	20	INSTALLED (SERIAL NO. BBM	223)	. 1			
VALVE	19	24 54 JTS plus 2 PUP JTS 3-1/2"	9.315/ft	2.92	3.5 1	895.00	3413.
-	4.0	23 FLOW COUPLING	-1100 150	2.93	3.85	6.09	5108.
	10	22 CAMCO MMG SPM with DUMM	Y VALVE	2.90	5.97	8.51	5114.
	L 17	INSTALLED (SERIAL NO. BMM	220)		1		
VALVE	16)	21 43 JTS plus 2 PUP JTS 3-1/2".	9.3Ib/ft	2.92	3.5 1	351.67	5122.
		20 FLOW COUPLING		2.93	3.85	6.09	8474.
	15	19 CAMCO MMG SPM with DUMM	Y VALVE	2.90	5.97	8.45	6480.
		INSTALLED (SERIAL NO. BBM 2	26)				
DUMMY	1.25	18 26 JTS plus 2 PUP JTS 3-1/2",	9.31b/ft	2.92	3.5	821.48	6489.
VALVE	13	17 FLOW COUPLING	HUS IBG	2.93	3.85	6.10	7310.
1	1.2	16 CAMCO MMG SPM with DUMM	Y VALVE	2.90	5.97	8.50	7316.
	12 1	INSTALLED (SERIAL NO. BBM	222)	+	1 1		1
CLOSED	11,00%	15 32 JTS plus 2 PUP JTS 3-1/2".	9.3 b/ft	2.92	3.5 1	009.43	7325.
10	15 24 Sect	14 FLOW COUPLING	HCS TBG	2.93	3.85	6.10	8334
		13 ICAMCO MMG SPM with DUMMY	VALVE	2.90	5.97	8.49	B340.
		INSTALLED (SERIAL NO. BBM	225)	++	1-1		
A'-8	121012	12 79 JTS plus 2 PUP JTS 3-1/2"	9.31b/ff	2.92	3.5 2	474.81	8349.
Star The Diney		11 FLOW COUPLING	HCS TBG	2.93	3.85	6.08	0823
214	n n6, FXDPNS	10 OTIS R.D. SLIDING SIDE DOOR	2.562")	2.56	4.31	3.37	10830
TO WORL WIT	JOINT	9 FLOW COUPLING		2.93	3.85	6.08	0833
5	- (n	8 2 PUP JTS 3-1/2" 9 31b/ft HCS	TBG	2 82	3.5	12 01	0839
2313	Ja-514	7 FLOW COUPLING		2.93	3.85	6 10	0851
XXN PLUG	2 2 2 2 3	6 CAMCO OF J EXPANSION JT (SERIAL NO	2 93	5.82	34 85	0857
in Michel	11:13	BBE 116) LENGTH OF OF JIN	FULLY CLC	SED PO	SITION	- 27	76'
k	C SC-1	5 2 PUP JTS 3-1/2", 9 31b/ft HC	S TRG	200	3.5	8 47	0802
(x ¥	PACKE	WELL HUD -11387 (DATE	15 4 90	1 12.02	3.5 TAL -	0.4/	
OUTLINE		LINCE HOD - HOD (DATE	10.4.00	, 10			
PACK							
ASSEMBLY							
		11080'-11	102' MOVER	1) 7034 3	-7052 3	. TVD (P	KR)
		PERFORATED INTERVALS- 11110'-11	130' MOKRKB	(7058'-7	072.6 TV	D(RKB)	
	63	SAND UNITS PERFORATED- 5.4/3D	30				
WELL INTE	RO- PPG KC	PKB TO MSI - 82'	CHLUMBERGE	H TCP G	UNS with	S 22 GM	CHARGE
FLUIDS Final	PPG QIL	ND RKB TO TOP H-4 W/HEAD PROFIL	E- 550 00		ULINA	AUN II I	
	GAS	THE TO TOP THE WHEAD PROPIL					

Crazy design a friend of mine made in the Java Sea (Indonesia).

Their challenge is many zones...

Figure 1-7 Northwest Java Sea Well Completion

Types of Completions Summary

- Completions are categorized in many ways but what you use is related to the functional requirements for the well
 - Land, offshore platform, TLP, subsea all imply different requirements due to location
 - Flowing, Gas lift, rod pump, ESP, Plunger Lift if the well cannot flow one of the artificial lift methods must be used
 - Gravel pack, screens, high rate water pack, frac pack types of completions where sand control is necessary
 - Geometry vertical, deviated, extended reach, horizontal
 - Number of zones single, dual
 - Uniform tubular size monobore
 - Order of producing multiple zones comingled, selective
 - How flow is controlled wireline, remotely (intelligent completions)
 - Combinations of these Multi-zone, horizontal fractured well completions (shale plays)