Al-Ayen University College of Petroleum Engineering

Reservoir Engineering II

Lecturer: Dr. Mohammed Idrees Al-Mossawy

2020/2021

Lecture 12: Pseudo-Steady State Flow of Reservoir Fluids (Part 2) Ref.: Reservoir Engineering Handbook by Tarek Ahmed

1

Outline

- Pseudo-Steady State of Flow Radial Flow for Slightly Compressible Fluids
 - Shapes of the Well Drainage Area
 - > Example
- Pseudo-Steady State of Radial Flow for Compressible Fluids (Gases)
 - Pressure-Squared Approximation Method
 - Pressure- Approximation Method
- □ Summary
- Discussion

Semi (Pseudo)-Steady State of Radial Flow for Slightly Compressible Fluids

Shapes of the Well Drainage Area

- It should be pointed out that the pseudosteady-state flow occurs regardless of the geometry of the reservoir.
- Ramey and Cobb (1971) introduced a correction factor that is called the shape factor, CA, which is designed to
 account for the deviation of the drainage area from the ideal circular form.
- In terms of the volumetric average pressure, \bar{p}_r : $p_{wf} = \bar{p}_r \frac{162.6 \text{QB}\mu}{\text{kh}} \log \left| \frac{4\text{A}}{1.781 \text{C}_A r_w^2} \right|$
- In terms of the initial reservoir pressure, P_i :

$$\overline{p}_{r} = p_{i} - \frac{0.23396 \,\text{q t}}{c_{t} A h \phi}$$

$$p_{wf} = \left[p_{i} - \frac{0.23396 \,\text{q B t}}{A h \phi c_{t}} \right] - \frac{162.6 \,\text{q B \mu}}{k h} \log \left[\frac{4 \text{A}}{1.781 \text{C}_{\text{A}} r_{w}^{2}} \right]$$
where k = permeability, mD

A = drainage area, ft² C_A = shape factor Q = flow rate, STB/day t = time, hr c_t = total compressibility coefficient, psi⁻¹

In Bounded Reservoirs	C _A	In C _A	$\frac{1}{2} ln \left(\frac{2.2458}{C_A} \right)$	Exact for t _{DA} >	Less than 1% Error For t _{DA} >	Use Infinite System Solution with Less Than 1% Error for t _{DA} <	In Bounded Reservoirs	CA	In C _A	$\frac{1}{2} ln \left(\frac{2.2458}{C_A} \right)$	Exact for t _{DA} >	Less than 1% Error For t _{DA} >	Use Infinite System Solution with Less than 1% Error for t _{DA} <		
\odot	31.62	3.4538	-1.3224	0.1	0.06	0.10		0.5813	-0.5425	+0.6758	2.0	0.60	0.02		\backslash
\odot	31.6	3.4532	-1.3220	0.1	0.06	0.10	2 1	0.1109	-2.1991	+1.5041	3.0	0.60	0.005		Transient region
\triangle	27.6	3.3178	-1.2544	0.2	0.07	0.09	•	\$.3790	1.6825	-0.4367	0.8	0.30	0.01	p_{wf}	X
60°	27.1	3.2995	-1.2452	0.2	0,07	0.09		2.6896	0.9894	-0.0902	0.8	0.30	0.01		Pseudosteady-state region
N3	21.9	3.0865	-1.1387	0.4	0.12	0.08	Ē	0.2318	-1.4619	+1.1355	4.0	2.00	0.03		region
3	0.098	-2.3227	+1.5659	0.9	0.60	0.015		0.1155	-2.1585	+1.4838	4.0	2.00	0.01		t
•	30.8828	3.4302	-1.3106	0.1	0.05	0.09	W VERTICALLY FRACTURE]1 2.3606	0.8589 Use (x	-0.0249 $(\sqrt{x_c})^2$ in place of A/r ²	1.0	0.40	0.025		Flow Regimes
H •	12.9851	2.5638	-0.8774	0.7	0.25	0.03		2.6541	0.9761	-0.0835	0.175	0.08	cannot use	htti 26_	ps://petrowiki.spe.org/File:Vol5_Page_0 _Image_0002.png
H	4.5132	1.5070	-0.3490	0.6	0.30	0.025		2.0348	0.7104	+0.0493	0.175	0.09	cannot use		
	3.3351	1.2045	-0.1977	0.7	0.25	0.01	2 0.3	1.9986	0.6924	+0.0583	0.175	0.09	cannot use		
• 1 2	21.8369	3.0836	-1.1373	0.3	0.15	0.025	1 05	1.6620	0.5080	+0.1505	0.175	0.09	cannot use		
	10.8374	2.3830	-0.7870	0.4	0.15	0.025	1 0.7 1	1.3127	0.2721	+0.2685	0.175	0.09	cannot use		
1	4.5141	1.5072	-0.3491	1.5	0.50	0.06	IN WATER-DRIVE RESERVE	0.7887 איג	-0.2374	+0.5232	0.175	0.09	cannot use		
2 ¹	2.0769	0.7309	-0.0391	1.7	0.50	0.02	MADELERIYON'S OF UNLINE	19.1	2.95	-1.07	-		-		
2	3.1573	1.1497	-0.1703	0.4	0.15	0.005	\odot	25.0	3.22	-1.20	223		20		

Shape Factors for Various Single-Well Drainage Areas

Example

An oil well is developed on the center of a 40-acre square-drilling pattern. The well is producing at a constant flow rate of 800 STB/day under a semisteady-state condition. The reservoir has the following properties:

$\phi = 15\%$	h = 30 ft	k = 200 md
$\mu = 1.5 \text{ cp}$	$B_o = 1.2 \text{ bbl/STB}$	$c_t = 25 \times 10^{-6} \text{ psi-1}$
$p_i = 4500 \text{ psi}$	$r_{w} = 0.25 \text{ ft}$	A = 40 acres

- a. Calculate and plot the bottom-hole flowing pressure as a function of time.
- b. Based on the plot, calculate the pressure decline rate. What is the decline in the average reservoir pressure from t = 10 to t = 200 hr?

Solution

10) - 211.101 For

Pseudo-Steady State of Radial Flow for Compressible Fluids (Gases)

Two approximations to the above solution are widely used. These approximations are:

- Pressure-squared approximation
- Pressure-approximation

Pressure-Squared Approximation Method

This method provides us with compatible results to that of the exact solution approach when p < 2000. The solution has the following familiar form:

$$Q_{g} = \frac{\mathrm{kh}(\overline{p}_{\mathrm{r}}^{2} - p_{\mathrm{wf}}^{2})}{1422 \,\mathrm{T}\overline{\mu} \,\overline{\mathrm{z}} \left(\mathrm{ln} \frac{\mathrm{r}_{\mathrm{e}}}{\mathrm{r}_{\mathrm{w}}} - 0.75 \right)}$$

The average gas properties z and μ are evaluated at: \overline{p}

$$= \sqrt{\frac{(\overline{p}_r)^2 + p_{wf}^2}{2}}$$

Pressure-Approximation Method

This approximation method is applicable at p > 3000 psi and has the following mathematical form:

$$Q_{g} = \frac{kh(\overline{p}_{r} - p_{wf})}{1422 \overline{\mu} \overline{B}_{g} \left(ln \frac{r_{e}}{r_{w}} - 0.75 \right)}$$

with the gas properties evaluated at:

 $\overline{\overline{p}} = \frac{\overline{p}_{r} + p_{wf}}{2}$ $\overline{B}_{g} = 0.00504 \frac{\overline{z} T}{\overline{p}}$

where Qg = gas flow rate, Mscf/day k = permeability, md Bg = gas formation volume factor at average pressure, bbl/scf

Summary

- The pseudosteady-state flow occurs regardless of the geometry of the reservoir.
- The shape factor, C_A, is designed to account for the deviation of the drainage area from the ideal circular form
- For radial flow of gases under the pseudo-steady state, there are three forms of the mathematical solution to the diffusivity equation:
 - The m(p)-Solution Method (Exact Solution)
 - > The Pressure-Squared Method (p^2 Approximation Method)
 - The Pressure Method (p Approximation Method)

Discussion

From the table of shape factor (C_A), investigate how the value of C_A changes with the boundary shape and well location. Discuss influence of these changes in C_A values on the pressure drop in a reservoir with a single well produces at a constant flow rate.

THANK YOU