Al-Ayen University
 College of Petroleum Engineering

Reservoir Engineering II

Lecturer: Dr. Mohammed Idrees Al-Mossawy

Lecture 5: Steady-State Flow of Reservoir Fluids (Part 1)
Ref.: Reservoir Engineering Handbook by Tarek Ahmed

Outlines

- Darcy's Law
- Steady-State Flow
> Horizontal Linear Flow of Incompressible Fluids
> Inclined Flow of Incompressible Fluids
> Linear Flow of Compressible Fluids (Gases)
> Radial Flow of Incompressible Fluids

Darcy's Law

- For a horizontal linear system $\nu=\frac{\mathrm{q}}{\mathrm{A}}=-\frac{\mathrm{k}}{\mu \mathrm{dp}} \frac{\mathrm{dx}}{}$
- For a horizontal-radial system, the pressure gradient is positive:

$$
\begin{aligned}
\nu & =\frac{\mathrm{q}_{\mathrm{r}}}{\mathrm{~A}_{\mathrm{r}}}=\frac{\mathrm{k}}{\mu}\left(\frac{\partial \mathrm{p}}{\partial \mathrm{r}}\right)_{\mathrm{r}} \\
\mathrm{~A}_{\mathrm{r}} & =2 \pi \mathrm{rh}
\end{aligned}
$$

Darcy's Law applies only when the following conditions exist:

- Laminar (viscous) flow
- Steady-state flow
- Homogeneous formation
- No fluid-rock reaction

Steady-State Flow

Horizontal Linear Flow of Incompressible Fluids

$$
\begin{aligned}
& \nu=\frac{\mathrm{q}}{\mathrm{~A}}=-\frac{\mathrm{kdp}}{\mu \mathrm{dx}} \\
& \frac{\mathrm{q}}{\mathrm{~A}} \int_{0}^{\mathrm{L}} \mathrm{dx}=-\frac{\mathrm{k}}{\mu} \int_{\mathrm{p}_{1}}^{\mathrm{p}} \mathrm{dp} \\
& \mathrm{q}=\frac{\mathrm{kA}\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}{\mu \mathrm{L}} \\
& \mathrm{q}=\frac{0.001127 \mathrm{kA}\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}{\mu \mathrm{L}},
\end{aligned}
$$

Example 1

An incompressible fluid flows in a linear porous media with the following properties:

$$
\begin{aligned}
& \mathrm{L}=2000 \mathrm{ft} \quad \mathrm{~h}=20^{\prime} \quad \text { width }=300^{\prime} \\
& \mathrm{k}=100 \mathrm{md} \quad \phi=15 \% \quad \mu=2 \mathrm{cp} \\
& \mathrm{p}_{1}=2000 \mathrm{psi} \quad \mathrm{p}_{2}=1990 \mathrm{psi}
\end{aligned}
$$

Calculate:
a. Flow rate in $\mathrm{bbl} /$ day
b. Apparent fluid velocity in $\mathrm{ft} /$ day
c. Actual fluid velocity in $\mathrm{ft} /$ day

Solution

Calculate the cross-sectional area A:

$$
\mathrm{A}=(\mathrm{h})(\text { width })=(20)(300)=6000 \mathrm{ft}^{2}
$$

a. Calculate the flow rate

$$
\begin{aligned}
& \mathrm{q}=\frac{0.001127 \mathrm{kA}\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}{\mu \mathrm{L}} \\
& \mathrm{q}=\frac{(0.001127)(100)(6000)(2000-1990)}{(2)(2000)}=1.6905 \mathrm{bbl} / \mathrm{day}
\end{aligned}
$$

b. Calculate the apparent velocity:

$$
\mathrm{v}=\frac{\mathrm{q}}{\mathrm{~A}}=\frac{(1.6905)(5.615)}{6000}=0.0016 \mathrm{ft} / \text { day }
$$

c. Calculate the actual fluid velocity:

$$
\mathrm{v}=\frac{\mathrm{q}}{\phi \mathrm{~A}}=\frac{(1.6905)(5.615)}{(0.15)(6000)}=0.0105 \mathrm{ft} / \mathrm{day}
$$

Inclined Flow of Incompressible Fluids

$\mathrm{q}=\frac{0.001127 \mathrm{kA}\left(\Phi_{1}-\Phi_{2}\right)}{\mu \mathrm{L}}$
$\Phi_{\mathrm{i}}=\mathrm{p}_{\mathrm{i}}-\left(\frac{\rho}{144}\right) \Delta \mathrm{z}_{\mathrm{i}}$
Expressing the fluid density in gm/cc in the equation gives:
$\Phi_{\mathrm{i}}=\mathrm{p}_{\mathrm{i}}-0.433 \gamma \Delta \mathrm{z}_{\mathrm{i}} \quad$ Note: $1 \mathrm{gm} / \mathrm{cm} 3=62.4 \mathrm{lb} / \mathrm{ft} 3$
$\Phi_{\mathrm{i}}=$ fluid potential at point i, psi

$\mathrm{p}_{\mathrm{i}}=$ pressure at point i, psi
$\Delta z_{i}=$ vertical distance from point i to the selected datum level
$\rho=$ fluid density, $\mathrm{lb} / \mathrm{ft}^{3}$
$\gamma=$ fluid density, $\mathrm{gm} / \mathrm{cm}^{3}$

- The datum is usually selected at the gas-oil contact, oil-water contact, or at the highest point in formation.
- The vertical distance $\Delta z i$ is assigned as a positive value when the point i is below the datum level and as a negative when it is above the datum level.

Example 2

Assume that the porous media with the properties as given in the previous example is tilted with a dip angle of 5° as shown in Figure. The incompressible fluid has a density of $42 \mathrm{lb} / \mathrm{ft}^{3}$. Resolve Example 1 using this additional information.

Solution

Let the datum level at half the vertical distance between the two points, i.e., at 87.15 feet.

$$
\begin{aligned}
& \Phi_{1}=\mathrm{p}_{1}-\left(\frac{\rho}{144}\right) \Delta \mathrm{z}_{1}=2000-\left(\frac{42}{144}\right)(87.15)=1974.58 \mathrm{psi} \\
& \Phi_{2}=\mathrm{p}_{2}+\left(\frac{\rho}{144}\right) \Delta \mathrm{z}_{2}=1990+\left(\frac{42}{144}\right)(87.15)=2015.42 \mathrm{psi}
\end{aligned}
$$

Since $\Phi 2>\Phi 1$, the fluid flows downward from Point 2 to Point 1.
$\mathrm{q}=\frac{0.001127 \mathrm{kA}\left(\Phi_{2}-\Phi_{1}\right)}{\mu \mathrm{L}}=6.9 \mathrm{bbl} /$ day
Apparent velocity $=\frac{(6.9)(5.615)}{6000}=0.0065 \mathrm{ft} /$ day
Actual velocity $=\frac{(6.9)(5.615)}{(0.15)(6000)}=0.043 \mathrm{ft} /$ day

Linear Flow of Compressible Fluids (Gases)

- The number of gas moles n at pressure p, temperature T, and volume V : $n=\frac{p V}{z R T}$
- At standard conditions, the volume occupied by the above n moles is given by: $\mathrm{V}_{\mathrm{sc}}=\frac{\mathrm{nz}_{\mathrm{sc}} R T_{\mathrm{sc}}}{\mathrm{p}_{\mathrm{sc}}}$
- Combining the above two expressions and assuming $\mathrm{Zsc}_{\mathrm{sc}}=1$ gives: $\quad \frac{\mathrm{pV}}{\mathrm{zT}}=\frac{\mathrm{p}_{\mathrm{sc}} \mathrm{V}_{\mathrm{sc}}}{\mathrm{T}_{\mathrm{sc}}}$
- Equivalently, the above relation can be expressed in terms of the flow rate as: $\frac{5.615 \mathrm{pq}}{\mathrm{zT}}=\frac{\mathrm{p}_{\mathrm{sc}} \mathrm{Q}_{\mathrm{sc}}}{\mathrm{T}_{\mathrm{sc}}}$
Rearranging: $\quad\left(\frac{\mathrm{p}_{\mathrm{sc}}}{\mathrm{T}_{\mathrm{sc}}}\right)\left(\frac{\mathrm{zT}}{\mathrm{p}}\right)\left(\frac{\mathrm{Q}_{\mathrm{sc}}}{5.615}\right)=\mathrm{q}$
$q=$ gas flow rate at pressure p and temperature $T, b b l /$ day
Qsc = gas flow rate at standard conditions, scf/day
z = gas compressibility factor
$\mathrm{Tsc}, \mathrm{psc}=$ standard temperature and pressure in ${ }^{\circ} \mathrm{R}$ and psia , respectively

$$
\left(\frac{\mathrm{p}_{\mathrm{sc}}}{\mathrm{~T}_{\mathrm{sc}}}\right)\left(\frac{\mathrm{zT}}{\mathrm{p}}\right)\left(\frac{\mathrm{Q}_{\mathrm{sc}}}{5.615}\right)=\mathrm{q}
$$

- Replacing the gas flow rate q with that of Darcy's Law, i.e., the equation gives:

$$
\frac{\mathrm{q}}{\mathrm{~A}}=\left(\frac{\mathrm{p}_{\mathrm{sc}}}{\mathrm{~T}_{\mathrm{sc}}}\right)\left(\frac{\mathrm{zT}}{\mathrm{p}}\right)\left(\frac{\mathrm{Q}_{\mathrm{sc}}}{5.615}\right)\left(\frac{1}{\mathrm{~A}}\right)=-0.001127 \frac{\mathrm{k}}{\mu} \frac{\mathrm{dp}}{\mathrm{dx}}
$$

- The constant 0.001127 is to convert from Darcy's units to field units. Separating variables and arranging yields:

$$
\left[\frac{\mathrm{q}_{\mathrm{sc}} \mathrm{p}_{\mathrm{sc}} \mathrm{~T}}{0.006328 \mathrm{k} \mathrm{~T}_{\mathrm{sc}} \mathrm{~A}}\right] \int_{0}^{\mathrm{L}} \mathrm{dx}=-\int_{\mathrm{p} 1}^{\mathrm{z} 2} \frac{\mathrm{p}}{\mathrm{z} \mu_{\mathrm{g}}} \mathrm{dp}
$$

- Assuming constant z and μ g over the specified pressures, i.e., p1 and p2, and integrating gives:

$$
\begin{array}{|l|l}
\hline \mathrm{Q}_{\mathrm{sc}}=\frac{0.003164 \mathrm{~T}_{\mathrm{sc}} \mathrm{Ak}\left(\mathrm{p}_{1}^{2}-\mathrm{p}_{2}^{2}\right)}{\mathrm{p}_{\mathrm{sc}} \mathrm{TLz} \mu_{\mathrm{g}}} &
\end{array}
$$

- It is essential to notice that those gas properties z and $\mu \mathrm{g}$ are a very strong function of pressure, but they have been removed from the integral to simplify the final form of the gas flow equation.
- These equations are valid for applications when the pressure <2000 psi. The gas properties must be evaluated at the average pressure p as defined

$$
\overline{\mathrm{p}}=\sqrt{\frac{\mathrm{p}_{1}^{2}+\mathrm{p}_{2}^{2}}{2}} \quad \text { Read Example 6-4, page 348, Reservoir Engineering Handbook }
$$

Radial Flow of Incompressible Fluids

$\mathrm{v}=\frac{\mathrm{q}}{\mathrm{A}_{\mathrm{r}}}=\frac{\mathrm{q}}{2 \pi \mathrm{rh}}=0.001127 \frac{\mathrm{k}}{\mu} \frac{\mathrm{dp}}{\mathrm{dr}}$
$\mathrm{v}=$ apparent fluid velocity, bbl/day- ft^{2}
$\mathrm{q}=$ flow rate at radius $\mathrm{r}, \mathrm{bbl} /$ day
$\mathrm{k}=$ permeability, md
$\mu=$ viscosity, cp
$0.001127=$ conversion factor to express the equation in field units
$\mathrm{A}_{\mathrm{r}}=$ cross-sectional area at radius r
$\frac{\mathrm{Q}_{0} \mathrm{~B}_{\mathrm{o}}}{2 \pi \mathrm{rh}}=0.001127 \frac{\mathrm{k}}{\mu_{\mathrm{o}}} \frac{\mathrm{dp}}{\mathrm{dr}}$

For incompressible fluid Qo is constant, thus: $\quad \frac{Q_{0}}{2 \pi h} \int_{r_{1}}^{r_{2}} \frac{d r}{r}=\frac{0.001127 k}{\mu_{0} B_{0}} \int_{P_{1}}^{P_{2}} d p$
Performing the integration, gives:

$$
\mathrm{Q}_{\mathrm{o}}=\frac{0.00708 \mathrm{kh}\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right)}{\mu_{\mathrm{o}} \mathrm{~B}_{\mathrm{o}} \ln \left(\mathrm{r}_{2} / \mathrm{r}_{1}\right)} \quad \text { or } \quad \mathrm{Q}_{\mathrm{o}}=\frac{0.00708 \mathrm{kh}\left(\mathrm{p}_{\mathrm{e}}-\mathrm{p}_{\mathrm{w}}\right)}{\mu_{\mathrm{o}} \mathrm{~B}_{\mathrm{o}} \ln \left(\mathrm{r}_{\mathrm{e}} / \mathrm{r}_{\mathrm{w}}\right)} \longrightarrow
$$

$\mathrm{Q}_{\mathrm{o}}=$ oil, flow rate, $\mathrm{STB} /$ day
$\mathrm{p}_{\mathrm{e}}=$ external pressure, psi
$\mathrm{p}_{\mathrm{wf}}=$ bottom-hole flowing pressure, psi
$\mathrm{k}=$ permeability, md
$\mu_{\mathrm{o}}=$ oil viscosity, cp
$\mathrm{B}_{\mathrm{o}}=$ oil formation volume factor, $\mathrm{bbl} / \mathrm{STB}$
$\mathrm{h}=$ thickness, ft
$\mathrm{r}_{\mathrm{e}}=$ external or drainage radius, ft
$\mathrm{r}_{\mathrm{w}}=$ wellbore radius, ft

Example

An oil well in the Nameless Field is producing at a stabilized rate of $600 \mathrm{STB} /$ day at a stabilized bottom-hole flowing pressure of 1800 psi . The reservoir permeability is 120 md and the reservoir thickness is 25 ft . The well drains an area of approximately 40 acres. The following additional data is available: $\mathrm{rw}=0.25 \mathrm{ft}$, $\mathrm{Bo}=1.25$ $\mathrm{bbl} / \mathrm{STB}, \mu \mathrm{o}=2.5 \mathrm{cp}$. Calculate the pressure at the outer boundary of the well drainage area.

Solution

$$
\begin{aligned}
& r_{e}=\sqrt{\frac{43,560 \mathrm{~A}}{\pi}}=744.73 \mathrm{ft} \\
& \mathrm{Q}_{\mathrm{o}}=\frac{0.00708 \mathrm{kh}\left(\mathrm{p}_{\mathrm{e}}-\mathrm{p}_{\mathrm{w}}\right)}{\mu_{\mathrm{o}} \mathrm{~B}_{\mathrm{o}} \ln \left(\mathrm{r}_{\mathrm{e}} / \mathrm{r}_{\mathrm{w}}\right)} \\
& \mathrm{p}=\mathrm{p}_{\mathrm{wf}}+\left[\frac{\mathrm{Q}_{\mathrm{o}} \mathrm{~B}_{\mathrm{o}} \mu_{\mathrm{o}}}{0.00708 \mathrm{kh}}\right] \ln \left(\frac{\mathrm{r}_{\mathrm{e}}}{r_{\mathrm{w}}}\right)=2506.15 \mathrm{psi}
\end{aligned}
$$

THANK YOU

