Al-Ayen University College of Petroleum Engineering

Reservoir Engineering II

Lecturer: Dr. Mohammed Idrees Al-Mossawy

2020/2021

Lecture 8: Unsteady-State Flow of Reservoir Fluids (Part 2) Ref.: Reservoir Engineering Handbook by Tarek Ahmed

Outlines

Unsteady-State Flow

□ Solution of the Diffusivity Equation

- Radial Flow of the Slightly Compressible Fluids
 - ✓ The constant-terminal-rate solution
 - The Ei-function solution
 - The dimensionless pressure PD solution
 - o Infinite-acting reservoir
 - Finite-radial system

Unsteady-State Flow

Solution of the Diffusivity Equation: Radial Flow of the Slightly Compressible Fluids

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} = \frac{\phi \mu c_t}{0.000264 \, k} \frac{\partial p}{\partial t}$$

1. Constant-terminal-rate solution:

It solves for the pressure change throughout the radial system providing that the flow rate is held constant at one terminal end of the radial system.

2. Constant-terminal-pressure solution:

It is designed to provide the cumulative flow at any particular time for a reservoir in which the pressure at one boundary of the reservoir is held constant. *The constant-pressure solution is widely used in water influx calculations.* A detailed description of the solution is discussed in the water influx chapter.

The constant-terminal-rate solution

There are two commonly used forms of the constant-terminal-rate solution:

- The Ei-function solution
- The dimensionless pressure PD solution

The Ei-Function Solution

Matthews and Russell (1967) proposed a solution that is based on the following assumptions:

- 1. Infinite acting reservoir, i.e., the reservoir is infinite in size.
- 2. The well is producing at a constant flow rate.
- 3. The reservoir is at a uniform pressure, pi, when production begins.
- 4. The well, with a wellbore radius of rw, is centered in a cylindrical reservoir of radius re.
- 5. No flow across the outer boundary, i.e., at re.

$$p(r, t) = p_i + \left[\frac{70.6 Q_o \mu_o Bo}{kh}\right] E_i \left[\frac{-948 \phi \mu_o c_t r^2}{kt}\right] \longleftrightarrow$$
 It is commonly referred to as the *line-source solution*.

where P(r,t) = pressure at radius r from the well after t hours

k = permeability, md

Qo = flow rate, STB/day

The mathematical function, Ei, is called the exponential integral and is defined by:

$$E_{i}(-x) = -\int_{x}^{\infty} \frac{e^{-u} du}{u} = \left[\ln x - \frac{x}{1!} + \frac{x^{2}}{2(2!)} - \frac{x^{3}}{3(3!)} + \text{etc.} \right]$$

Craft, Hawkins, and Terry (1991) presented the values of the Ei-function in tabulated and graphical forms.

 The exponential integral Ei can be approximated (with less than 0.25%) Error) by the following equation when its argument x is less than 0.01:

 $E_i(-x) = \ln(1.781x)$

where the term x in this case is given by: $x = \frac{948 \phi \mu c_t r^2}{c_t^2}$

kt

 $\ln(x) = 2.303 \log(x)$

Thus Eq.:
$$p(r, t) = p_i + \left[\frac{70.6 Q_o \mu_o Bo}{kh}\right] E_i \left[\frac{-948 \varphi \mu_o c_t r^2}{kt}\right]$$

becomes:
$$p(r, t) = p_i - \frac{162.6 Q_o B_o \mu_o}{kh} \left[\log\left(\frac{k t}{\varphi \mu_o c_t r^2}\right) - 3.23\right]$$

• For the behavior of the bottom-hole flowing pressure at the wellbore, i.e., r = r_w:

$$p_{wf} = p_{i} - \frac{162.6 \, Q_{o} \, B_{o} \, \mu_{o}}{k \, h} \left[\log \left(\frac{k \, t}{\varphi \mu_{o} \, c_{t} \, r_{w}^{2}} \right) - 3.23 \right]$$

where:

$$\begin{split} k &= \text{permeability, md} \\ t &= \text{time, hr} \\ c_t &= \text{total compressibility, } \text{psi}^{-1} \end{split}$$

 It should be noted that these approximated equations cannot be used until the flow time t exceeds the limit imposed by the following constraint:

$$t > 9.48 \times 10^4 \frac{\varphi \mu_o \ c_t \ r^2}{k}$$

 It should be pointed out that for x > 10.9, the Ei (-x) can be considered zero for all practical reservoir engineering calculations.

Example 1

An oil well is producing at a constant flow rate of 300 STB/day under unsteady state flow conditions. The reservoir has the following rock and fluid properties:

 $\begin{array}{lll} B_{o}\,{=}\,1.25\,bbl/STB & \mu_{o}\,{=}\,1.5\,cp & c_{t}\,{=}\,12\,{\times}\,10^{-6}psi^{-1} \\ k_{o}\,{=}\,60\,md & h\,{=}\,15\,ft & p_{i}\,{=}\,4000\,psi \\ \varphi\,{=}\,15\% & r_{w}\,{=}\,0.25\,ft & \end{array}$

Calculate pressure at radii of 0.25, 5, 10, 50, 100, 500, 1000, 1500, 2000, and 2500 feet, for 1 hour. Plot the results as:

- a. Pressure versus logarithm of radius
- b. Pressure versus radius

Exercise: Repeat the example for t = 12 hours and 24 hours.

Solution									
$p(r,t) = p_i + \left[\frac{70.6 Q_o \mu_o \text{Bo}}{kh}\right] E_i \left[\frac{-948 \varphi \mu_o c_t r^2}{kt}\right]$									
$p(r,t) = 4000 + \left[\frac{70.6(300)(1.5)(1.25)}{(60)(15)}\right] \times E_i \left[\frac{-1}{1000}\right]$	948(0.15)(1 (6	$\frac{(5)(12 \times 10^{-6}) r^2}{50)(t)}$							
$p(r, t) = 4000 + 44.125 E_i \left[-42.6(10^{-6}) \frac{r^2}{2} \right]$	Elapsed Time t = 1 hr								
$\left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	r, ft	$x = -42.6(10^{-6})\frac{r^2}{1}$	E _i (–x)	$p(r, 1) = 4000 + 44.125 E_i (-x)$					
	0.25	-2.6625(10 ⁻⁶)	-12.26*	3459					
	5	-0.001065	-6.27*	3723					
	10	-0.00426	-4.88*	3785					
	50	-0.1065	-1.76^{+}	3922					
	100	-0.4260	-0.65	3971					
	500	-10.65	0	4000					
	1000	-42.60	0	4000					
	1500	-95.85	0	4000					
	2000	-175.40	0	4000					
	2500	-266.25	0	4000					
	*As calculated [†] From Figure 6	from Equation $E_i(-x) = 1$	ln(1.781x)						

Example 2

Using the data in Example 1, estimate the bottom-hole flowing pressure after 10 hours of production.

Solution

To use the approximated equation, the following condition should be satisfied:

$$t = 9.48 (10^4) \frac{(0.15)(1.5)(12 \times 10^{-6})(0.25)^2}{60} = 0.000267 \text{ hr}$$

Since t= 10 hrs > 0.000267 hr, then Pwf can be calculated from the following equation:

$$p_{wf} = p_i - \frac{162.6 \,Q_o \,B_o \,\mu_o}{k \,h} \left[\log \left(\frac{k \,t}{\phi \mu_o \,c_t \,r_w^2} \right) - 3.23 \right]$$
$$p_{wf} = 4000 - \frac{162.6(300)(1.25)(1.5)}{(60)(15)} \times \left[\log \left(\frac{(60)(10)}{(0.15)(1.5)(12 \times 10^{-6})(0.25)^2} \right) - 3.23 \right] = 3358 \,\text{psi}$$

The dimensionless pressure PD solution

To introduce the concept of the dimensionless pressure drop solution, consider for example Darcy's equation in a radial form:

 $Q_{o} = 0.00708 \frac{kh(p_{e} - p_{wf})}{\mu_{o} B_{o} ln(r_{e} / r_{w})}$

Rearrange the above equation to give:

$$\frac{p_e - p_{wf}}{\left(\frac{Q_o B_o \mu_o}{0.00708 \text{ kh}}\right)} = \ln\left(\frac{r_e}{r_w}\right)$$

It is obvious that the right hand side of the above equation has no units (i.e., dimensionless) and, accordingly, the left-hand side must be dimensionless

Therefore, above equation can be written in a dimensionless form as:

$$p_D = ln(r_{eD})$$
where $p_D = \frac{p_e - p_{wf}}{\left(\frac{Q_o B_o \mu_o}{0.00708 \, k \, h}\right)}$ and $r_{eD} = \frac{r_e}{r_w}$

This concept can be extended to consider unsteady state equations as follows:

In transient flow analysis, the dimensionless pressure p_p is always a function of dimensionless time that is defined by the following expression:

$$p_{\rm D} = \frac{p_{\rm i} - p(r,t)}{\left(\frac{Q_{\rm o} B_{\rm o} \mu_{\rm o}}{0.00708 \,\mathrm{k} \,\mathrm{h}}\right)}$$

Another definition in common usage is t_{DA} , the dimensionless time based on total drainage area:

$$t_{DA} = \frac{0.000264 \, \text{kt}}{\phi \mu c_t \, A} = t_D \left(\frac{r_w^2}{A}\right) \qquad \text{and} \qquad t_D = \frac{0.000264 \, \text{kt}}{\phi \mu c_t \, r_w^2}$$

And the dimensionless radial distances ro and roo are defined by:

$$\begin{split} r_{D} &= \frac{r}{r_{w}} \quad \text{and} \quad r_{eD} = \frac{r_{e}}{r_{w}} \\ \text{where} \quad t_{D} = \text{dimensionless time} \\ A &= \text{total drainage area} = \pi r_{e}^{2} \quad r_{D} = \text{dimensionless radius} \\ r_{e} &= \text{drainage radius, ft} \quad t = \text{time, hr} \\ r_{w} &= \text{wellbore radius, ft} \quad p(r,t) = \text{pressure at radius r and time t} \\ p_{D} &= \text{dimensionless pressure drop} \quad k = \text{premeability, md} \\ r_{eD} &= \text{dimensionless external radius} \quad \mu = \text{viscosity, cp} \end{split}$$

 The dimensionless groups (i.e., p_D, t_D, and r_D) can be introduced into the diffusivity equation to be in the following dimensionless form:

$$\frac{\partial^2 p_{\rm D}}{\partial r_{\rm D}^2} + \frac{1}{r_{\rm D}} \frac{\partial p_{\rm D}}{\partial r_{\rm D}} = \frac{\partial p_{\rm D}}{\partial t_{\rm D}}$$

- Van Everdingen and Hurst (1949) proposed an analytical solution to the above equation by assuming:
 - 1. Perfectly radial reservoir system
 - 2. The producing well is in the center and producing at a constant production rate of Q
 - 3. Uniform pressure Pithroughout the reservoir before production
 - 4. No flow across the external radius re.
- Chatas (1953) and Lee (1982) conveniently tabulated these solutions for the following two cases:
 - Infinite-acting reservoir
 - Finite-radial system

Infinite-acting reservoir

For an infinite-acting reservoir, i.e., $reD = \infty$, the dimensionless pressure drop function PD is strictly a function of the dimensionless time tD, or:

 $p_D = f(t_D)$

Chatas and Lee tabulated the p₀ values for the infinite-acting reservoir as shown in Table 6-2 (Tarek Ahmed). The following mathematical expressions can be used to approximate these tabulated values of P₀:

• For
$$t_D < 0.01$$
: $p_D = 2 \sqrt{\frac{t_D}{\pi}}$
• For $t_D > 100$: $p_D = 0.5[\ln(t_D) + 0.80907]$
• For $0.02 < t_D < 1000$:
 $p_D = a_1 + a_2 \ln(t_D) + a_3 [\ln(t_D)]^2 + a_4 [\ln(t_D)]^3 + a_5 t_D + a_6 (t_D)^2 + a_7 (t_D)^3 + a_8/t_D$

where $a_1 = 0.8085064$ $a_2 = 0.29302022$ $a_3 = 3.5264177(10^{-2})$ $a_4 = -1.4036304(10^{-3})$ $a_5 = -4.7722225(10^{-4})$ $a_6 = 5.1240532(10^{-7})$ $a_7 = -2.3033017(10^{-10})$ $a_8 = -2.6723117(10^{-3})$

tD	Pp	to	PD	t _D	PD
0	0	0.15	0.3750	60.0	2.4758
0.0005	0.0250	0.2	0.4241	70,0	2.5501
0.001	0.0352	0.3	0.5024	80.0	2.6147
0.002	0.0495	0.4	0.5645	90.0	2.6718
0.003	0.0603	0.5	0.6167	100.0	2.7233
0.004	0.0694	0.6	0.6622	150.0	2.9212
0.005	0.0774	0.7	0.7024	200.0	3.0636
0.006	0.0845	0.8	0.7387	250.0	3.1726
0.007	0.0911	0.9	0.7716	300.0	3.2630
0.008	0.0971	1.0	0.8019	350.0	3,3394
0.009	0.1028	1.2	0.8672	400.0	3.4057
0.01	0.1081	1.4	0.9160	450.0	3.4641
0.015	0.1312	2.0	1.0195	500.0	3,5164
0.02	0.1503	3.0	1.1665	550.0	3,5643
0.025	0.1669	4.0	1.2750	600.0	3.6076
0.03	0.1818	5.0	1.3625	650.0	3.6476
0.04	0.2077	6.0	1.4362	700.0	3.6842
0.05	0.2301	7.0	1.4997	750.0	3.7184
0.06	0.2500	8.0	1.5557	800.0	3.7505
0.07	0.2680	9.0	1.6057	850.0	3.7805
0.08	0.2845	10.0	1.6509	900.0	3.8088
0.09	0.2999	15.0	1.8294	950.0	3.8355
0.1	0.3144	20.0	1.9601	1,000.0	3.8584
		30.0	2.1470		
		40.0	2.2824		
		50.0	2.3884		

Notes: For $t_D < 0.01$, $p_D \cong 2 Z t_D k$. For $100 < t_D < 0.25 t_{sD}^2$, $p_D \cong 0.5 lln t_D + 0.80907$).

Finite-Radial System

For a finite radial system, the $\mathsf{P}_{\scriptscriptstyle D}\xspace$ -function is a function of both the dimensionless time and radius, or:

 $p_D = f(t_D, r_{eD})$

where

 $r_{eD} = \frac{\text{external radius}}{\text{wellbore radius}} = \frac{r_e}{r_w}$

- Van Everdingen and Hurst principally applied the P_o function solution to model the performance of water influx into oil reservoirs.
- Table 6-3 (Tarek Ahmed) presents P_0 as a function of t_0 for $1.5 < r_{eD} < 10$.
- 'wellbore radius r_{*} is in this case the external radius of the reservoir and the r_{*} is the external boundary radius of the aquifer.
- Chatas (1953) proposed the following mathematical expression for calculating P_D:

For 25 < t_D and 0.25 $r_{eD}^2 < t_D$ $p_D = \frac{0.5 + 2t_D}{r_{eD}^2 - 1} - \frac{r_{eD}^4 [3 - 4 \ln (r_{eD})] - 2r_{eD}^2 - 1}{4 (r_{eD}^2 - 1)^2}$ A special case arises when $r_{eD}^2 \gg 1$, then: $p_D = \frac{2 t_D}{r_{eD}^2} + \ln (r_{eD}) - 0.75$

r,	o = 1.5		r _{eD}	= 2.0		r _{ato} =	= 2.5	r _{aD}	= 3.0	r _{eD}	= 3.5	r _{sD}	= 4.0
t_D		DD.	t _D	ро	t,	D	Pр	t _D	p _D	f _D	Po	f _D	p_D
0.06	0.2	51	0.22	0.443	0.4	0	0.565	0.52	0.627	1.0	0.802	1.5	0.927
0.0	0.2	88	0.24	0.459	0.4	2	0.576	0.54	0.636	1.1	0.830	1.6	0.948
0.10	0.3	22	0.26	0.476	0.4	4	0.587	0.56	0.645	1.2	0.857	1.7	0.968
0.12	0.3	55	0.28	0.492	0.4	6	0.598	0.60	0.662	1.3	0.882	1.8	0.988
0.14	0.3	87	0.30	0.507	0.4	8	0.608	0.65	0.683	1.4	0.906	1.9	1.007
0.16	0.4	20	0.32	0.522	0.5	D	0.618	0,70	0.703	1.5	0.929	2.0	1.02
0,18	0.4	52	0.34	0.536	0.5	2	0.628	0.75	0,721	1.6	0.951	2.2	1.059
0.X	0.4	84	0.36	0.551	0,5	4	0.638	0.80	0.740	1.7	0.973	2.4	1.092
0.22	0.5	16	0.38	0.565	0.5	6	0.647	0.85	0.758	1.8	0.994	2.6	1.123
0.2	0.5	48	0.40	0.579	0.5	в	0.657	0.90	0.776	1.9	1.014	2.8	1.154
0.26	0.5	80	0.42	0.593	0.6	D	0.666	0.95	0.791	2.0	1.034	3.0	1.184
0.28	0.6	12	0.44	0.607	0.6	5	0.688	1.0	0.806	2.25	1.083	3.5	1.255
0.X	0.6	44	0.46	0.621	0.7	D	0.710	1,2	0.865	2.50	1.130	4.0	1.32
0.35	0.7	2.4	0.48	0.634	0.7	5	0.731	1.4	0.920	2.75	1,176	4.5	1.392
0.40	0.8	04	0.50	0.648	0.8	D	0.752	1.6	0.973	3.0	1.221	5.0	1.466
0.45	0.8	84	0.60	0.715	0.8	5	0.772	2.0	1.076	4.0	1.401	5.5	1.527
0.50	0.9	64	0.70	0.782	0.9	0	0.792	3.0	1.328	5.0	1.579	6.0	1,594
0.55	1.0	44	0.80	0.849	0.9	5	0.812	4.0	1.578	6.0	1,757	6.5	1.660
0.60	1.1	24	0.90	0.915	1.0		0.832	5.0	1.828			7.0	1.727
0,65	1.2	04	1.0	0.982	2.0		1.215					8.0	1.861
0.70	1.2	84	2.0	1.649	3.0		1.506					9.0	1.994
0.75	1.3	64	3.0	2.316	4.0		1.977					10.0	2.127
0.8	1.4	44	5.0	3.649	5.0		2,398						
r _{#D} = 4.5		r,	o = 5.0	r _{eD}	= 6.0	r,	aD = 7.0	T _{el}	0.8 = 6	f at)	9.0	f et) =	10.0
lo .	p_D	t _D	p_D	t_D	PD	4 _D	p _D	t_D	p_D	t _D	P _D	t _D	PD.
0.5	1.023	3.0	1.167	4,0	1.275	6.0	1,436	8.0	1,556	10.0	1.651	12.0	1.732
1.1	1.040	3.1	1,180	4.5	1.322	6.5	1.470	8,5	1,582	10.5	1.673	12.5	1.750
.2	1.056	3.2	1,192	5.0	1.364	7.0	1.501	9.0	1.607	11.0	1.693	13.0	1.768
.3	1.702	3,3	1.204	5,5	1.404	7.5	1.531	9,5	1.631	11.5	1.71.3	13.5	1.784
.4	1.087	3.4	1.215	6.0	1.441	8.0	1.559	10.0	1.653	12.0	1.732	14.0	1.801
2.5	1.102	3.5	1.227	6.5	1.477	8.5	1.586	10.5	1.675	12.5	1.750	14.5	1.817
2.6	1.116	3.6	1.238	7.0	1.511	9.0	1.613	11.0	1.697	13.0	1.768	15.0	1.832

TABLE 6-3 pp vs. tp-Finite-Radial System, Constant-Rate at the Inner

TABLE 6-3 pD vs. tD-Finite-Radial System, Constant-Rate at the Inner Boundary (After Lee, J., Well Testing, SPE Textbook Series.) (Permission to publish by the SPE, copyright SPE, 1982)-cont'd

r _{eD}	$t_{sD} = 4.5$		$r_{\rm eD}=5.0$		$t_{sD} = 6.0$		$r_{stD} = 7.0$		$r_{aD} = 8.0$		$r_{\rm sD} = 9.0$		$r_{\rm sD} = 10.0$	
t _D	PD	t _D	pp	t _D	pр	t _D	pр	to	pр	t_D	p_D	t _D	p _D	
2.7	1.130	3.7	1.249	7.5	1.544	9,5	1.638	11.5	1.717	13.5	1.786	15,5	1.847	
2.8	1.144	3.8	1,259	8.0	1.576	10.0	1.663	12.0	1.737	14.0	1,803	16.0	1.862	
2.9	1.158	3.9	1.270	8.5	1.607	11.0	1.711	12.5	1.757	14.5	1.819	17.0	1.890	
3.0	1.171	4.0	1,281	9.0	1,638	12.0	1.757	13.0	1.776	15.0	1.835	18.0	1.917	
3.2	1.197	4.2	1.301	9.5	1,668	13.0	1.810	13.5	1.795	15.5	1.851	19.0	1.943	
3.4	1.222	4.4	1.321	10.0	1.698	14.0	1.845	14.0	1.813	16.0	1.867	20.0	1.968	
3.6	1.246	4.6	1.340	11.0	1,757	15.0	1.888	14.5	1.831	17.0	1.897	22.0	2.017	
3.8	1.269	4.8	1.360	12.0	1.815	16.0	1.931	15.0	1.849	18.0	1.926	24.0	2.063	
4.0	1.292	5.0	1.378	13.0	1,873	17.0	1.974	17.0	1.919	19.0	1.955	26.0	2,108	
4.5	1.349	5.5	1.424	14.0	1.931	18.0	2.016	19.0	1.986	20.0	1.983	28.0	2.151	
5.0	1.403	6.0	1.469	15.0	1.988	19.0	2.058	21.0	2,051	22.0	2,037	30.0	2,194	
5.5	1.457	6.5	1.513	16.0	2.045	20.0	2.100	23.0	2,116	24,0	2.906	32.0	2,236	
6.0	1.510	7.0	1.556	17.0	2.103	22.0	2,184	25,0	2,180	26.0	2.142	34.0	2.278	
7.0	1.615	7.5	1.598	18.0	2.160	24.0	2.267	30,0	2.340	28.0	2.193	36.0	2.319	
8.0	1.719	8.0	1.641	19.0	2.217	26.0	2,351	35.0	2,499	30.0	2.244	38.0	2.360	
9.0	1.823	9.0	1.725	20.0	2.274	28.0	2.434	40.0	2,658	34.0	2.345	40.0	2.401	
10.0	1.927	10.0	1.808	25.0	2.560	30.0	2.517	45.0	2.817	38.0	2.446	50.0	2.604	
11.0	2.031	11.0	1.892	30.0	2.846					40.0	2.496	60.0	2.806	
12.0	2.1.35	12.0	1.975							45,0	2.621	70.0	3.008	
13.0	2.239	13.0	2.059							50.0	2.746	80.0	3.210	
14.0	2,343	14.0	2.142							60.0	2.996	90.0	3.412	
15.0	2,447	15.0	2,225							70.0	3,246	100.0	3.614	

Notes: For t_D smaller than values listed in this table for a given r_{aD} , reservoir is infinite acting. Find p_D in Table 6-2. For 25 < t_D and t_D larger than values in table.

$$p_D \cong \frac{\binom{1}{2} + 2t_D}{\binom{r_{eD}^2}{r_{eD}^2} - 1} = \frac{3t_{eD}^4 - 4t_{eD}^4 \ln t_{eD} - 2t_{eD}^2 - 1}{4(t_{eD}^2 - 1)^2}$$

For wells in rebounded reservoirs with $r_{eD}^2 \gg 1$

$$p_D \cong \frac{2t_D}{r_{eD}^2} + \ln r_{eD} - \frac{3}{4}.$$

Example 3

A well is producing at a constant flow rate of 300 STB/day under unsteady-state flow condition. The reservoir has the following rock and fluid properties:

$$\begin{array}{lll} B_{o} = 1.25 \ bbl/STB & \mu_{o} = 1.5 \ cp & c_{t} = 12 \times 10^{-6} \ psi^{-1} \\ k = 60 \ md & h = 15 \ ft & p_{i} = 4000 \ psi \\ \varphi = 15\% & r_{w} = 0.25' \end{array}$$

Assuming an infinite acting reservoir, i.e., $r_{eD} = \infty$, calculate the bottomhole flowing pressure after one hour of production using the dimensionless pressure approach.

Solution

$$t_{\rm D} = \frac{0.000264 \text{ kt}}{\phi \mu c_{\rm t} r_{\rm w}^2}$$
$$t_{\rm D} = \frac{0.000264(60)(1)}{(0.15)(1.5)(12 \times 10^{-6})(0.25)^2} = 93,866.67$$

Since t_{D} > 100, we can use Equation:

 $p_{D} = 0.5[\ln (t_{D}) + 0.80907]$ $p_{D} = 0.5[\ln (93,866.67) + 0.80907] = 6.1294$

From the definition of PD:

$$p_{D} = \frac{p_{i} - p(r, t)}{\left(\frac{Q_{o} B_{o} \mu_{o}}{0.00708 \text{ k h}}\right)}$$

$$p(r_{w}, t) = p_{i} - \left(\frac{Q_{o} B_{o} \mu_{o}}{0.00708 \text{ kh}}\right) p_{D}$$

$$p_{D}p(0.25, 1) = 4000 - \left[\frac{(300)(1.25)(1.5)}{0.00708(60)(15)}\right] (6.1294) = 3459 \text{ psi}$$

THANK YOU