Polar Coordinates

Relating Polar and Cartesian Coordinates

When we use both polar and Cartesian coordinates in a plane, we place the two origins together and take the initial polar ray as the positive x-axis. The ray $\theta = \pi/2$, r > 0,

FIGURE 11.25 The usual way to relate polar and Cartesian coordinates.

becomes the positive y-axis (Figure 11.25). The two coordinate systems are then related by the following equations.

Equations Relating Polar and Cartesian Coordinates

$$x = r \cos \theta$$
, $y = r \sin \theta$, $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$

The first two of these equations uniquely determine the Cartesian coordinates x and y given the polar coordinates r and θ . On the other hand, if x and y are given, the third equation gives two possible choices for r (a positive and a negative value). For each $(x,y) \neq (0,0)$, there is a unique $\theta \in [0,2\pi)$ satisfying the first two equations, each then giving a polar coordinate representation of the Cartesian point (x,y). The other polar coordinate representations for the point can be determined from these two,

EXAMPLE 4 Here are some plane curves expressed in terms of both polar coordinate and Cartesian coordinate equations.

Polar equation	Cartesian equivalent	
$r\cos\theta = 2$	x = 2	
$r^2 \cos \theta \sin \theta = 4$	xy = 4	
$r^2 \cos^2 \theta - r^2 \sin^2 \theta = 1$	$x^2 - y^2 = 1$	
$r = 1 + 2r\cos\theta$	$y^2 - 3x^2 - 4x - 1 = 0$	

FIGURE 11.26 The circle in Example 5.

EXAMPLE 5 Find a polar equation for the circle $x^2 + (y - 3)^2 = 9$ (Figure 11.26).

Solution We apply the equations relating polar and Cartesian coordinates:

$$x^{2} + (y - 3)^{2} = 9$$

$$x^{2} + y^{2} - 6y + 9 = 9$$

$$x^{2} + y^{2} - 6y = 0$$

$$x^{2} + y^{2} - 6y = 0$$

$$r^{2} - 6r \sin \theta = 0$$

$$r = 0 \text{ or } r - 6 \sin \theta = 0$$

$$r = 6 \sin \theta$$
Includes both possibilities

EXAMPLE 6 Replace the following polar equations by equivalent Cartesian equations and identify their graphs.

(a)
$$r \cos \theta = -4$$

(b)
$$r^2 = 4r\cos\theta$$

(c)
$$r = \frac{4}{2 \cos \theta - \sin \theta}$$

Solution We use the substitutions $r \cos \theta = x$, $r \sin \theta = y$, and $r^2 = x^2 + y^2$.

(a)
$$r \cos \theta = -4$$

The Cartesian equation:
$$r \cos \theta = -4$$

$$x = -4$$
 Substitution

The graph: Vertical line through x = -4 on the x-axis

(b)
$$r^2 = 4r\cos\theta$$

The Cartesian equation:
$$r^2 = 4r \cos \theta$$

$$x^2 + y^2 = 4x$$

$$x^2 - 4x + y^2 = 0$$

$$x^2 - 4x + 4 + y^2 = 4$$

$$(x - 2)^2 + y^2 = 4$$
Substitution

Completing the square
Factoring

The graph: Circle, radius 2, center (h, k) = (2, 0)

(c)
$$r = \frac{4}{2\cos\theta - \sin\theta}$$

The Cartesian equation:
$$r(2\cos\theta - \sin\theta) = 4$$

 $2r\cos\theta - r\sin\theta = 4$ Multiplying by r
 $2x - y = 4$ Substitution
 $y = 2x - 4$ Solve for y .

The graph: Line, slope m = 2, y-intercept b = -4

Example 7 / convert the point $(2, \frac{\pi}{3})$ from polar coordinate to Cartesian coordinate Example 8 / convert the point (1,-1) from Cartesian coordinate to polar coordinate

Homework

Polar to Cartesian Coordinates

Find the Cartesian coordinates of the following points (given in polar coordinates).

a.
$$(\sqrt{2}, \pi/4)$$

c.
$$(0, \pi/2)$$

d.
$$(-\sqrt{2}, \pi/4)$$

Polar to Cartesian Equations

Replace the polar equations in Exercises 27-52 with equivalent Cartesian equations.

27.
$$r \cos \theta = 2$$

28.
$$r \sin \theta = -1$$

29.
$$r \sin \theta = 0$$

30.
$$r \cos \theta = 0$$

31.
$$r = 4 \csc \theta$$

32.
$$r = -3 \sec \theta$$

33.
$$r\cos\theta + r\sin\theta = 1$$
 34. $r\sin\theta = r\cos\theta$

34
$$r \sin \theta = r \cos \theta$$

35.
$$r^2 = 1$$

36.
$$r^2 = 4r \sin \theta$$

37.
$$r = \frac{5}{\sin \theta - 2 \cos \theta}$$
 38. $r^2 \sin 2\theta = 2$

38.
$$r^2 \sin 2\theta = 2$$

39.
$$r = \cot \theta \csc \theta$$

40.
$$r = 4 \tan \theta \sec \theta$$

41.
$$r = \csc \theta e^{r \cos \theta}$$

42.
$$r \sin \theta = \ln r + \ln \cos \theta$$

43.
$$r^2 + 2r^2 \cos \theta \sin \theta = 1$$
 44. $\cos^2 \theta = \sin^2 \theta$

44.
$$\cos^2\theta = \sin^2\theta$$

45.
$$r^2 = -4r \cos \theta$$

45.
$$r^2 = -4r\cos\theta$$
 46. $r^2 = -6r\sin\theta$

47.
$$r = 8 \sin \theta$$

48.
$$r = 3 \cos \theta$$

49.
$$r = 2\cos\theta + 2\sin\theta$$
 50. $r = 2\cos\theta - \sin\theta$

$$50. r = 2\cos\theta - \sin\theta$$

51.
$$r \sin \left(\theta + \frac{\pi}{6}\right) = 2$$

51.
$$r \sin \left(\theta + \frac{\pi}{6}\right) = 2$$
 52. $r \sin \left(\frac{2\pi}{3} - \theta\right) = 5$

Cartesian to Polar Equations

Replace the Cartesian equations in Exercises 53-66 with equivalent polar equations.

53.
$$x = 7$$

54.
$$y = 1$$

55.
$$x = y$$

56.
$$x - y = 3$$

56.
$$x - y = 3$$
 57. $x^2 + y^2 = 4$ **58.** $x^2 - y^2 = 1$

58.
$$x^2 - y^2 = 1$$

59.
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 60. $xy = 2$

60.
$$xy = 2$$

61.
$$v^2 = 4x$$

62.
$$x^2 + xy + y^2 = 1$$

63.
$$x^2 + (y - 2)^2 = 4$$

63.
$$x^2 + (y - 2)^2 = 4$$
 64. $(x - 5)^2 + y^2 = 25$

65.
$$(x-3)^2 + (y+1)^2 = 4$$

65.
$$(x-3)^2 + (y+1)^2 = 4$$
 66. $(x+2)^2 + (y-5)^2 = 16$

