Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

FIGURE
To derive a formula for
the area of region OTS, we approximate the region with fan-shaped circular sectors

This section shows how to calculate areas of plane regions and lengths of curves in pola coordinates. The defining ideas are the same as before, but the formulas are different in polar versus Cartesian coordinates.

Area in the Plane
The region OTS in Figure $\quad \mid$ is bounded by the rays $\theta=\alpha$ and $\theta=\beta$ and the curve $r=f(\theta)$. We approximate the region with n nonoverlapping fan-shaped circular sectors based on a partition P of angle TOS. The typical sector has radius $r_{k}=f\left(\theta_{k}\right)$ and central angle of radian measure $\Delta \theta_{k^{*}}$. Its area is $\Delta \theta_{k} / 2 \pi$ times the area of a circle of radius r_{k}, or

$$
A_{k}=\frac{1}{2} r_{k}^{2} \Delta \theta_{k}=\frac{1}{2}\left(f\left(\theta_{k}\right)\right)^{2} \Delta \theta_{k}
$$

The area of region $O T S$ is approximately

$$
\sum_{k=1}^{n} A_{k}=\sum_{k=1}^{n} \frac{1}{2}\left(f\left(\theta_{k}\right)\right)^{2} \Delta \theta_{k} .
$$

If f is continuous, we expect the approximations to improve as the norm of the partition P goes to zero, where the norm of P is the largest value of $\Delta \theta_{k}$. We are then led to the following formula defining the region's area:

$$
\begin{aligned}
A & =\lim _{\|\beta\| \rightarrow 0} \sum_{k=1}^{n} \frac{1}{2}\left(f\left(\theta_{k}\right)\right)^{2} \Delta \theta_{k} \\
& =\int_{\alpha}^{\beta} \frac{1}{2}(f(\theta))^{2} d \theta
\end{aligned}
$$

Area of the Fan-Shaped Region Between the Origin and the Curve $r=f(\theta)$ $\alpha \leq \boldsymbol{\theta} \leq \boldsymbol{\beta}$

$$
A=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta
$$

This is the integral of the area differential (Figure 11.32)

$$
d A=\frac{1}{2} r^{2} d \theta=\frac{1}{2}(f(\theta))^{2} d \theta
$$

EXAMPLE 1 Find the area of the region in the $x y$-plane enclosed by the cardioid $r=2(1+\cos \theta)$.

Solution We graph the cardioid (Figure) and determine that the radius $O P$ sweeps
FIGURE The cardioid in Example 1.

FIGURE . The area of the shaded region is calculated by subtracting the area of the region between r_{1} and the origin from the area of the region between r_{2} and the origin.

$$
\begin{aligned}
\int_{\theta=0}^{\theta=2 \pi} \frac{1}{2} r^{2} d \theta & =\int_{0}^{2 \pi} \frac{1}{2} \cdot 4(1+\cos \theta)^{2} d \theta \\
& =\int_{0}^{2 \pi} 2\left(1+2 \cos \theta+\cos ^{2} \theta\right) d \theta \\
& =\int_{0}^{2 \pi}\left(2+4 \cos \theta+2 \cdot \frac{1+\cos 2 \theta}{2}\right) d \theta \\
& =\int_{0}^{2 \pi}(3+4 \cos \theta+\cos 2 \theta) d \theta \\
& =\left[3 \theta+4 \sin \theta+\frac{\sin 2 \theta}{2}\right]_{0}^{2 \pi}=6 \pi-0=6 \pi
\end{aligned}
$$

To find the area of a region like the one in Figure 11.34, which lies between two polar curves $r_{1}=r_{1}(\theta)$ and $r_{2}=r_{2}(\theta)$ from $\theta=\alpha$ to $\theta=\beta$, we subtract the integral of $(1 / 2) r_{1}^{2} d \theta$ from the integral of $(1 / 2) r_{2}^{2} d \theta$. This leads to the following formula.

FIGURE The region and limits of integration in Example 2.

$$
\begin{align*}
& \text { Area of the Region } 0 \leq r_{1}(\theta) \leq r \leq r_{2}(\theta), \alpha \leq \theta \leq \beta \\
& \qquad A=\int_{\alpha}^{\beta} \frac{1}{2} r_{2}^{2} d \theta-\int_{\alpha}^{\beta} \frac{1}{2} r_{1}^{2} d \theta=\int_{\alpha}^{\beta} \frac{1}{2}\left(r_{2}^{2}-r_{1}^{2}\right) d \theta \tag{1}
\end{align*}
$$

EXAMPLE 2 Find the area of the region that lies inside the circle $r=1$ and outside the cardioid $r=1-\cos \theta$.

Solution We sketch the region to determine its boundaries and find the limits of integration (Figure 11.35). The outer curve is $r_{2}=1$, the inner curve is $r_{1}=1-\cos \theta$, and θ runs from $-\pi / 2$ to $\pi / 2$. The area, from Equation (1), is

$$
\begin{aligned}
A & =\int_{-\pi / 2}^{\pi / 2} \frac{1}{2}\left(r_{2}^{2}-r_{1}^{2}\right) d \theta \\
& =2 \int_{0}^{\pi / 2} \frac{1}{2}\left(r_{2}^{2}-r_{1}^{2}\right) d \theta \quad \text { Symmetry } \\
& =\int_{0}^{\pi / 2}\left(1-\left(1-2 \cos \theta+\cos ^{2} \theta\right)\right) d \theta \quad \text { Square } r_{1} . \\
& =\int_{0}^{\pi / 2}\left(2 \cos \theta-\cos ^{2} \theta\right) d \theta=\int_{0}^{\pi / 2}\left(2 \cos \theta-\frac{1+\cos 2 \theta}{2}\right) d \theta \\
& =\left[2 \sin \theta-\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right]_{0}^{\pi / 2}=2-\frac{\pi}{4} .
\end{aligned}
$$

Length of a Polar Curve

We can obtain a polar coordinate formula for the length of a curve $r=f(\theta), \alpha \leq \theta \leq \beta$, by parametrizing the curve as

$$
\begin{equation*}
x=r \cos \theta=f(\theta) \cos \theta, \quad y=r \sin \theta=f(\theta) \sin \theta, \quad \alpha \leq \theta \leq \beta \tag{2}
\end{equation*}
$$

The parametric length formula, Equation (3) from Section 11.2, then gives the length as

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta
$$

This equation becomes

$$
L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

when Equations (2) are substituted for x and y (Exercise 29).

FIGURE Calculating the length
of a cardioid (Example 3).

Length of a Polar Curve
If $r=f(\theta)$ has a continuous first derivative for $\alpha \leq \theta \leq \beta$ and if the point $P(r, \theta)$ traces the curve $r=f(\theta)$ exactly once as θ runs from α to β, then the length of the curve is

$$
\begin{equation*}
L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \tag{3}
\end{equation*}
$$

EXAMPLE 3 Find the length of the cardioid $r=1-\cos \theta$.

With

$$
r=1-\cos \theta, \quad \frac{d r}{d \theta}=\sin \theta
$$

we have

$$
\begin{aligned}
r^{2}+\left(\frac{d r}{d \theta}\right)^{2} & =(1-\cos \theta)^{2}+(\sin \theta)^{2} \\
& =1-2 \cos \theta+\underbrace{\cos ^{2} \theta+\sin ^{2} \theta}_{1}=2-2 \cos \theta
\end{aligned}
$$

and

$$
\begin{aligned}
L & =\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{0}^{2 \pi} \sqrt{2-2 \cos \theta} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{4 \sin ^{2} \frac{\theta}{2}} d \theta \\
& =\int_{0}^{2 \pi} 2\left|\sin \frac{\theta}{2}\right| d \theta \\
& =\int_{0}^{2 \pi} 2 \sin \frac{\theta}{2} d \theta \\
& =\left[-4 \cos \frac{\theta}{2}\right]_{0}^{2 \pi}=4+4=8
\end{aligned}
$$

Finding Polar Areas
Find the areas of the regions in Exercises 1-8.

1. Bounded by the spiral $r=\theta$ for $0 \leq \theta \leq \pi$

2. Bounded by the circle $r=2 \sin \theta$ for $\pi / 4 \leq \theta \leq \pi / 2$

3. Inside the oval limaçon $r=4+2 \cos \theta$
4. Inside the cardioid $r=a(1+\cos \theta), \quad a>0$
5. Inside one leaf of the four-leaved rose $r=\cos 2 \theta$
6. Inside one leaf of the three-leaved rose $r=\cos 3 \theta$

7. Inside one loop of the lemniscate $r^{2}=4 \sin 2 \theta$
8. Inside the six-leaved rose $r^{2}=2 \sin 3 \theta$

Finding Lengths of Polar Curves
Find the lengths of the curves in Exercises 21-28,
21. The spiral $r=\theta^{2}, \quad 0 \leq \theta \leq \sqrt{5}$
22. The spiral $r=e^{\theta} / \sqrt{2}, \quad 0 \leq \theta \leq \pi$
23. The cardioid $r=1+\cos \theta$
24. The curve $r=a \sin ^{2}(\theta / 2), \quad 0 \leq \theta \leq \pi, \quad a>0$
25. The parabolic segment $r=6 /(1+\cos \theta), \quad 0 \leq \theta \leq \pi / 2$
26. The parabolic segment $r=2 /(1-\cos \theta), \quad \pi / 2 \leq \theta \leq \pi$

Example 1
Find the area of the region in the $x y$-plane enclosed by the cardioid $y=2(1+\cos \theta)$

Solution

$$
\begin{aligned}
A & =\int_{0}^{\beta} \frac{1}{2} r^{2} d \theta=\int_{0}^{2 \pi} \frac{1}{2} \cdot 4(1+\cos \theta)^{2} d \theta \\
& =\int_{0}^{2 \pi} 2\left(1+2 \cos \theta+\cos ^{2} \theta\right) d \theta \\
& =\int_{0}^{2 \pi}\left(2+4 \cos \theta+2 \cos ^{2} \theta\right) d \theta \\
& =\int_{0}^{2 \pi}\left(2+4 \cos \theta+2\left(\frac{1+\cos 2 \theta}{2}\right) d \theta\right. \\
& =\int_{0}^{2 \pi}(2+4 \cos \theta+1+\cos 2 \theta) d \theta \\
& =\int_{0}^{2 \pi}(3+4 \cos \theta+\cos 2 \theta) d \theta \\
& =\int_{0}^{2 \pi}=3 \theta+4 \sin \theta+\left.\frac{\sin 2 \theta}{2}\right|_{0} ^{2 \pi} \\
& =3(2 \pi-0)+4(\sin 2 \pi-\sin 0)+\frac{1}{2}(\sin 4 \pi-\sin 2(0)) \\
& =6 \pi+4(0-0)+\frac{1}{2}(0-0)=6 \pi
\end{aligned}
$$

Example 2
Find the sta of the region that lies inside the circle $t=1$ and outside the cardioid $x=1-\cos \theta$

Solution

$$
\begin{aligned}
& A=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right) d \theta \\
& =2 \int_{0}^{\frac{\pi}{2}} \frac{1}{2}\left(v_{2}^{2}-\lambda_{1}^{2}\right) d \theta \\
& =\int_{0}^{\frac{\pi}{2}}\left((1)^{2}-(1-\cos \theta)^{2}\right) d \theta \\
& =\int_{0}^{\frac{\pi}{2}}\left(1-1+2 \cos \theta-\cos ^{2} \theta\right) d \theta \\
& =\int_{0}^{\frac{\pi}{2}}\left(2 \cos \theta-\cos ^{2} \theta\right) d \theta \\
& =\int_{0}^{\frac{\pi}{2}}\left(2 \cos \theta-\left(\frac{1+\cos 2 \theta}{2}\right)\right) d \theta \\
& =\frac{\pi}{2}=\frac{\pi}{2}=\left.\left(2 \sin \theta-\frac{1}{2} \theta-\frac{\sin 2 \theta}{4}\right)\right|_{0} ^{\frac{\pi}{2}} \\
& =2\left(\sin \frac{\pi}{2}-\sin 0\right)-\frac{1}{2}\left(\frac{\pi}{2}-0\right)-\frac{1}{4}\left(\sin 2\left(\frac{\pi}{2}\right)-\sin 2(\theta\right. \\
& =12(1-0)-\frac{\pi}{4}-\frac{1}{4}(0-0) \\
& =1
\end{aligned}
$$

Example 3
Find the length of the cardioid

$$
t=1-\cos \theta
$$

Solution

$$
\begin{aligned}
& L=\int_{\alpha}^{B} \sqrt{r^{2}+\left(\frac{\partial r}{\partial \theta}\right)^{2}} d \theta \\
& \lambda=1-\cos \theta, \frac{\partial \lambda}{\partial \theta}=\sin \theta \\
& y^{2}+\left(\frac{\partial y}{\partial \theta}\right)^{2}=(1-\cos \theta)^{2}+\sin ^{2} \theta \\
& =1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta \\
& =1-2 \cos \theta+1=2-2 \cos \theta \\
& L=\int_{\alpha}^{B} \sqrt{x^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta=\int_{0}^{2 \pi} \sqrt{(2-2 \cos \theta)} d \theta \\
& \cos 2 a=1-2 \sin ^{2} \alpha \\
& L=\int_{\alpha}^{\beta} \sqrt{2-2\left(1-2 \sin ^{2} \frac{\theta}{2}\right)} d \theta=\int_{\alpha}^{\beta} \sqrt{\left(2-2+4 \sin \frac{\theta}{2}\right)} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{4 \sin ^{2} \frac{\theta}{2}} d \theta=\int_{2 \pi}^{2 \pi} 2\left|\sin \frac{\theta}{2}\right| d \theta \\
& =-\left.4 \cos \frac{\theta}{2}\right|_{0} ^{2 \pi}=-4\left[\cos \frac{2 \pi}{2}-\cos \frac{0}{2}\right] \\
& =-4(-1-1)^{0}=4+4=8
\end{aligned}
$$

