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Unsteady-State Single-Phase Flow

* Under the steady-state flowing condition, the same quantity of fluid enters the flow
system as leaves it. In unsteady-state flow condition, the flow rate into an element of
volume of a porous medium may not be the same as the flow rate out of that element.

* The mathematical formulation of the diffusivity (transient-flow) equation is based on
combining three independent equations:

a. Continuity Equation

b. Transport Equation: Basically, the transport equation is Darcy’s equation in its
generalized differential form.

c. Compressibility Equation (Equation of State)



Linear Unsteady-State Single-Phase Flow
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Linear Unsteady-State Single-Phase Flow
Slightly Compressible Fluids
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Basic Differential Equations of Single-Phase
Flow in Porous Media

1D single phase flow of slightly compressible fluid in linear-
reservoir with sources/sinks.

2
Homogeneous Res. : 1.127x10_3£5 p_qsc(x,t)B_ ¢, Op

p Ox’ v,  5.615 ot
Heterogeneous Res.: 1.127x107° Ok op _qsc(x,t)B _ gc, Op
Ox\ p Ox v, 5.615 ot

q.. = surface rate (STB/D), q,. > 0 for production (sink) well, and ¢q,. < 0 for
source (injection) well, Vb = bulk volume (cuft), k (md), u (cp), p (psi), t (days),
x (ft), ct(1/psi).

2D single phase flow of slightly compressible fluid in a heterogeneous linear-
reservoir with sources/sinks.
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Basic Differential Equations of Single-Phase
Flow in Porous Media

Similar method (as in linear flow) can be used to derive the following
equations for the radial flow:
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