Ex.8: 500 bbls of drilling mud prepared from water and bentonite. Bentonite weight percentage to water is ($\mathbf{8} \%$). Oil diesel ($\rho=\mathbf{6 . 8 7} \mathrm{ppg}$) added and density of the fluid became ($\mathbf{8 . 4 5} \mathrm{ppg}$). Calculate:

1- Amount of bentonite in tons (weight).
2- Amount of $\mathrm{H}_{2} \mathrm{O}$ in bbls
3- Amount of diesel in bbls.

Solution:

1) $\frac{w_{\mathrm{Bn}}}{w_{\mathrm{H} 2 \mathrm{O}}}=8 \%$

$$
\mathrm{W}_{\mathrm{Bn}}=0.08 \mathrm{~W}_{\mathrm{H} 2 \mathrm{O}}
$$

$\rho_{\mathrm{m} 1}=\frac{\sum \mathrm{w}}{\sum \mathrm{v}}=\frac{\mathrm{w}_{\mathrm{H} 2 \mathrm{O}}+\mathrm{w}_{\mathrm{Bn}}}{\mathrm{v}_{\mathrm{H} 20}+\mathrm{v}_{\mathrm{Bn}}}$
$\rho_{\mathrm{m} 1}=\frac{\mathrm{W}_{\mathrm{H} 2 \mathrm{O}}+0.08 * \mathrm{~W}_{\mathrm{H} 2 \mathrm{O}}}{\frac{W_{\mathrm{H} 2 \mathrm{O}}+0.08 * \mathrm{~W}_{\mathrm{H} 2 \mathrm{O}}}{8.33} \frac{20.8}{20}}$
$\rho_{\mathrm{m} 1}=\frac{\mathrm{w}_{\mathrm{H} 2 \mathrm{O}}(1+0.08)}{\mathrm{w}_{\mathrm{H} 2 \mathrm{O}}\left(\frac{1}{8.33}+\frac{0.08}{20.8}\right)}=8.7 \mathrm{ppg}$ for water and Bentonite
$\mathrm{v}_{\mathrm{Bn}}=\frac{\mathrm{v}_{\mathrm{m} 2}\left(\rho_{\mathrm{m} 2}-\rho_{\mathrm{m} 1}\right)}{\rho_{\mathrm{s}}-\rho_{\mathrm{m} 1}}$
$\mathrm{v}_{\mathrm{Bn}}=\frac{500 *(8.7-8.33)}{20.8-8.33}=14.8 \mathrm{bbl}$
$\mathrm{w}_{\mathrm{Bn}}=14.8 \mathrm{bbl} * 20.8 \frac{\mathrm{Ib}}{\mathrm{gal}} * 42 \frac{\mathrm{gal}}{\mathrm{bbl}}=12929 \mathrm{Ib}$
$\mathrm{w}_{\mathrm{Bn}}=\frac{12929}{2000}=6.46$ tons
2) $\mathrm{w}_{\mathrm{m} 1}=8.7 * 500 * 42=182700 \mathrm{Ib}$ total weight of mixture
$\mathrm{W}_{\mathrm{H} 2 \mathrm{O}}=182700-12929=16977 \mathrm{Ib}$
$\mathrm{V}_{\mathrm{H} 2 \mathrm{O}}=\frac{16977}{8.33 * 42}=485 \mathrm{bbl}$
$\mathrm{v}_{\mathrm{o}}=\frac{\mathrm{v}_{\mathrm{m} 1}\left(\rho_{\mathrm{m} 1}-\rho_{\mathrm{m} 2}\right)}{\rho_{\mathrm{m} 2}-\rho_{\mathrm{o}}}$
$\mathrm{V}_{\mathrm{o}}=\frac{500 *(8.7-8.45)}{8.45-6.87}=79.11 \mathrm{bbl}$

Mixing Fluids of Different Densities

$\rho_{\mathrm{mF}} \mathbf{V}_{\mathrm{F}}=\rho_{\mathrm{m} 1} \mathbf{V}_{\mathrm{m} 1}+\rho_{\mathrm{m} 2} \mathbf{V}_{\mathrm{m} 2}$

Ex.9: A limit is placed on the desired volume: Determine the volume of 11 ppg mud and 14 ppg mud required to build $\mathbf{3 0 0}$ bbl of $\mathbf{1 1 . 5} \mathrm{ppg}$ mud:

Solution:

Let $\mathrm{V}_{1}=\mathrm{bbl}$ of $11 \mathrm{ppg} \operatorname{mud}$
$\mathrm{V}_{2}=\mathrm{bbl}$ of 14 ppg mud
Then
a) $\mathrm{V}_{1}+\mathrm{V}_{2}=300 \mathrm{bbl}$
b) $(11) \mathrm{V}_{1}+(14) \mathrm{V}_{2}=(11.5)(300)$

Multiply Equation a by the density of the lowest mud weight ($\rho_{1}=11 \mathrm{ppg}$) and subtract the result from Equation \mathbf{b} :
b) $(11)\left(\mathrm{V}_{1}\right)+(14)\left(\mathrm{V}_{2}\right)=3450$

-

a) $(11)\left(\mathrm{V}_{1}\right)+(11)\left(\mathrm{V}_{2}\right)=3300$
$(3)\left(\mathrm{V}_{2}\right)=150$
$3 \mathrm{~V}_{2}=150$
$\mathrm{V}_{2}=150 / 3$
$\mathrm{V}_{2}=50$
Therefore: $\mathrm{V}_{2}=50 \mathrm{bbl}$ of 14 ppg mud
$\mathrm{V}_{1}+\mathrm{V}_{2}=300 \mathrm{bbl}$
$\mathrm{V} 1=300-50$
$\mathrm{V}_{1}=250 \mathrm{bbl}$ of 11 ppg mud

Oil-Based Mud Calculations

Density of oil/water mixture being used

$\boldsymbol{\rho}_{\mathbf{o}} \mathbf{V}_{\mathbf{o}}+\boldsymbol{\rho}_{\mathbf{w}} \mathbf{V}_{\mathbf{w}}=\boldsymbol{\rho}_{\mathrm{m} 2} \mathbf{V}_{\mathbf{m} 2}$

Ex.13: If the oil/water (o/w) ratio is $\mathbf{7 5 / 2 5}\left(\mathbf{7 5} \%\right.$ oil, V_{1}, and $\mathbf{2 5} \%$ water, V_{2}), the following material balance is set up:

Solution:

NOTE: The weight of diesel oil, $\rho_{\mathrm{o}}=7 \mathrm{ppg}$
The weight of water, $\rho_{\mathrm{m} 2}=8.33 \mathrm{ppg}$
$(0.75)(7)+(0.25)(8.33)=(0.75+0.25) \rho_{\mathrm{m} 2}$
$5.25+2.0825=1 \rho_{\mathrm{m} 2}$
$7.33=\rho_{\mathrm{m} 2}$
Therefore: The density of the oil/water mixture $=7.33 \mathrm{ppg}$

Oil/Water Ratio From Retort Data

Obtain the percent-by-volume oil and percent-by-volume water from retort analysis or mud still analysis. Using the data obtained, the oil/water ratio is calculated as follows:
$\%$ oil in liquid phase $=\frac{\% \text { by vol. oil }}{\% \text { by vol. oil }+\% \text { by vol water }} \times 100$
$\%$ water in liquid phase $=\frac{\% \text { by vol. water }}{\% \text { by vol. oil }+\% \text { by vol } . \text { water }} \times 100$
Result: The oil/water ratio is reported as the percent oil and the percent water.
Ex.14: Retort analysis: \% by volume oil = $\mathbf{5 1} \%$ by volume water $=\mathbf{1 7} \%$ by volume solids $=\mathbf{3 2}$

Solution:

$\%$ oil in liquid phase $=\frac{\mathbf{5 1}}{51+\mathbf{1 7}} \times \mathbf{1 0 0}=\mathbf{0 . 7 5}=\mathbf{7 5} \%$
$\%$ water in liquid phase $=\frac{17}{51+17} \times 100=0.25=25 \%$
c) Result: Therefore, the oil/water ratio is reported as $75 / 25$: 75%) oil and 25%) water.

