Mechanics

Dynamics

Title: Rotation

Dr. Mohaimen Al-Thamir

Lecture No. 9

Rotation

The rotation of a rigid body is described by its angular motion. The figure below shows a rigid body which is rotating as it undergoes plane motion in the plane of the figure. The angular positions of any two lines 1 and 2 attached to the body are specified by $\theta 1$ and $\theta 2$ measured from any convenient fixed reference direction. Because the angle β is invariant, the relation $\theta 2=\theta 1+\beta$ upon differentiation with respect to time gives $\dot{\theta} 2=\dot{\theta} 1$ and $\ddot{\theta} 2=\ddot{\theta} 1$ or, during a finite interval, $\Delta \theta 2=\Delta \theta 1$.
Thus, all lines on a rigid body in its plane of motion have the same angular displacement, the same angular velocity, and the same angular acceleration.

Angular-motion relations

The angular velocity ω and angular acceleration α of a rigid body in plane rotation are, respectively, the first and second time derivatives of the angular position coordinate θ of any line in the plane of motion of the body. These definitions give

$$
\begin{gather*}
\omega=\frac{d \theta}{d t}=\dot{\theta} \\
\alpha=\frac{d \omega}{d t}=\dot{\omega} \quad \text { or } \quad \alpha=\frac{d^{2} \theta}{d t^{2}}=\ddot{\theta} \tag{1}\\
\omega d \omega=\alpha d \theta \quad \text { or } \quad \dot{\theta} d \dot{\theta}=\ddot{\theta} d \theta
\end{gather*}
$$

For rotation with constant angular acceleration, the integrals of Eqs. 1 becomes

$$
\begin{aligned}
\omega & =\omega_{0}+\alpha t \\
\omega^{2} & =\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right) \\
\theta & =\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}
\end{aligned}
$$

Here θ_{o} and ω_{o} are the values of the angular position coordinate and angular velocity, respectively, at $t=0$, and t is the duration of the motion considered.

Rotation about a Fixed Axis

When a rigid body rotates about a fixed axis, all points other than those on the axis move in concentric circles about the fixed axis. Thus, for the rigid body in the figure below rotating about a fixed axis normal to the plane of the figure through O , any point such as A moves in a circle of radius r .

With the notation $\omega=\dot{\theta}$ and $\alpha=\dot{\omega}=\ddot{\theta}$ for the angular velocity and angular acceleration, respectively, of the body we have

Vectors expressions

The angular velocity of the rotating body may be expressed by the vector ω normal to the plane of rotation and having a sense governed by the right-hand rule. The aforementioned quantities may be expressed alternatively using the cross product relationship of vector notation as explained below:

$$
\mathbf{v}=\dot{\mathbf{r}}=\omega \times \mathbf{r}
$$

The order of the vectors to be crossed must be retained. The reverse order gives $\mathbf{r} \times \boldsymbol{\omega}=-\mathbf{v}$.

Example 1

The pinion A of the hoist motor drives gear B, which is attached to the hoisting drum. The load L is lifted from its rest position and acquires an upward velocity of $3 \mathrm{ft} / \mathrm{sec}$ in a vertical rise of 4 ft with constant acceleration. As the load passes this position, compute (a) the acceleration of point C on the cable in contact with the drum and (b) the angular velocity and angular acceleration of the pinion A.

Solution

(a)

$$
\begin{array}{lr}
{\left[v^{2}=2 a s\right]} & a=a_{t}=v^{2} / 2 \mathrm{~s}=3^{2} /[2(4)]=1.125 \mathrm{ft} / \mathrm{sec}^{2} \\
{\left[a_{n}=v^{2} / r\right]} & a_{n}=3^{2} /(24 / 12)=4.5 \mathrm{ft} / \mathrm{sec}^{2} \\
{\left[a=\sqrt{a_{n}{ }^{2}+a_{t}^{2}}\right]} & a_{C}=\sqrt{(4.5)^{2}+(1.125)^{2}}=4.64 \mathrm{ft} / \mathrm{sec}^{2}
\end{array}
$$

Ans.
(b)

$$
\begin{array}{ll}
{[v=r \omega]} & \omega_{B}=v / r=3 /(24 / 12)=1.5 \mathrm{rad} / \mathrm{sec} \\
{\left[a_{t}=r \alpha\right]} & \alpha_{B}=a_{t} / r=1.125 /(24 / 12)=0.562 \mathrm{rad} / \mathrm{sec}^{2}
\end{array}
$$

Then from $v_{1}=r_{A} \omega_{A}=r_{B} \omega_{B}$ and $a_{1}=r_{A} \alpha_{A}=r_{B} \alpha_{B}$, we have

$$
\begin{aligned}
& \omega_{A}=\frac{r_{B}}{r_{A}} \omega_{B}=\frac{18 / 12}{6 / 12} 1.5=4.5 \mathrm{rad} / \mathrm{sec} \mathrm{CW} \\
& \alpha_{A}=\frac{r_{B}}{r_{A}} \alpha_{B}=\frac{18 / 12}{6 / 12} 0.562=1.688 \mathrm{rad} / \mathrm{sec}^{2} \mathrm{CW}
\end{aligned}
$$

Ans.

Ans.

Example 2

The right-angle bar rotates clockwise with an angular velocity which is decreasing at the rate of $4 \mathrm{rad} / \mathrm{s}^{2}$. Write the vector expressions for the velocity and acceleration of point A when $\omega=2 \mathrm{rad} / \mathrm{s}$.

Solution Using the right-hand rule gives

$$
\omega=-2 \mathbf{k ~ r a d} / \mathrm{s} \quad \text { and } \quad \alpha=+4 \mathbf{k r a d} / \mathrm{s}^{2}
$$

The velocity and acceleration of A become

$$
\begin{array}{ll}
{[\mathbf{v}=\omega \times \mathbf{r}]} & \mathbf{v}=-2 \mathbf{k} \times(0.4 \mathbf{i}+0.3 \mathbf{j})=0.6 \mathbf{i}-0.8 \mathbf{j} \mathrm{~m} / \mathrm{s} \\
{\left[\mathbf{a}_{n}=\omega \times(\omega \times \mathbf{r})\right]} & \mathbf{a}_{n}=-2 \mathbf{k} \times(0.6 \mathbf{i}-0.8 \mathbf{j})=-\mathbf{1 . 6 \mathbf { i }}-1.2 \mathbf{j} \mathrm{~m} / \mathrm{s}^{2} \\
{\left[\mathbf{a}_{t}=\alpha \times \mathbf{r}\right]} & \mathbf{a}_{t}=4 \mathbf{k} \times(0.4 \mathbf{i}+0.3 \mathbf{j})=-1.2 \mathbf{i}+1.6 \mathbf{j} \mathrm{~m} / \mathrm{s}^{2} \\
{\left[\mathbf{a}=\mathbf{a}_{n}+\mathbf{a}_{t}\right]} & \mathbf{a}=-2.8 \mathbf{i}+0.4 \mathbf{j} \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

Ans.

The magnitudes of \mathbf{v} and \mathbf{a} are

$$
v=\sqrt{0.6^{2}+0.8^{2}}=1 \mathrm{~m} / \mathrm{s} \quad \text { and } \quad a=\sqrt{2.8^{2}+0.4^{2}}=2.83 \mathrm{~m} / \mathrm{s}^{2}
$$

