Al-Ayen University
 College of Petroleum Engineering

Reservoir Engineering II

Lecturer: Dr. Mohammed Idrees Al-Mossawy

Lecture 6: Steady-State Flow of Reservoir Fluids (Part 2)
Ref.: Reservoir Engineering Handbook by Tarek Ahmed

Outlines

- Steady-State Flow
> Radial Flow of Compressible Fluids (Gases)
* Pressure-Squared Method
> Horizontal Multiple-Phase Flow

Steady-State Flow

Radial Flow of Compressible Fluids (Gases)

For a radial gas flow, the Darcy's equation takes the form:

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{gr}}=\frac{0.001127(2 \pi \mathrm{rh}) \mathrm{k}}{\mu_{\mathrm{g}}} \frac{\mathrm{dp}}{\mathrm{dr}} \ldots \\
& \mathrm{q}_{\mathrm{gr}}=\text { gas flow rate at radius } \mathrm{r}, \mathrm{bbl} / \text { day } \\
& \mathrm{r}=\text { radial distance, } \mathrm{ft} \\
& \mathrm{~h}=\text { zone thickness, } \mathrm{ft} \\
& \mu_{\mathrm{g}}=\text { gas viscosity, } \mathrm{cp} \\
& \mathrm{p}=\text { pressure, psi } \\
& 0.001127 \text { = conversion constant from Darcy units to field units }
\end{aligned}
$$

Referring to the gas flow rate at standard condition as Qg , the gas flow rate qgr under pressure and temperature can be converted to that of standard condition by applying the real gas equation of state to both conditions, or:

$$
\begin{align*}
& \frac{5.615 \mathrm{q}_{\mathrm{gr}} \mathrm{p}}{\mathrm{zRT}}=\frac{\mathrm{Q}_{\mathrm{g}} \mathrm{p}_{\mathrm{sc}}}{\mathrm{Z}_{\mathrm{sc}} \mathrm{R} \mathrm{~T}_{\mathrm{sc}}} \\
& \left(\frac{\mathrm{p}_{\mathrm{sc}}}{5.615 \mathrm{~T}_{\mathrm{sc}}}\right)\left(\frac{\mathrm{zT}}{\mathrm{p}}\right) \mathrm{Q}_{\mathrm{g}}=\mathrm{q}_{\mathrm{gr}} \tag{2}\\
& \\
& \mathrm{p}_{\mathrm{sc}}=\text { standard pressure, psia } \\
& \mathrm{T}_{\mathrm{sc}}=\text { standard temperature, }{ }^{\circ} \mathrm{R} \\
& \mathrm{Q}_{\mathrm{g}}=\text { gas flow rate, scf } / \text { day } \\
& \mathrm{q}_{\mathrm{gr}}=\text { gas flow rate at radius } \mathrm{r}, \text { bbl/day } \\
& \mathrm{p}=\text { pressure at radius } \mathrm{r}, \text { psia } \\
& \mathrm{T}=\text { reservoir temperature, }{ }^{\circ} \mathrm{R} \\
& \mathrm{z}=\text { gas compressibility factor at } \mathrm{p} \text { and } \mathrm{T} \\
& \mathrm{z}_{\mathrm{sc}}=\text { gas compressibility factor at standard condition } \cong 1.0
\end{align*}
$$

Combining Equations 1 and 2 yields:

$$
\left(\frac{\mathrm{p}_{\mathrm{sc}}}{5.615 \mathrm{~T}_{\mathrm{sc}}}\right)\left(\frac{\mathrm{zT}}{\mathrm{p}}\right) \mathrm{Q}_{\mathrm{g}}=\frac{0.001127(2 \pi \mathrm{rh}) \mathrm{k} \frac{\mathrm{dp}}{\mu_{\mathrm{g}}} \frac{\mathrm{dr}}{}{ }^{2}}{}
$$

Assuming that $\mathrm{T}_{\mathrm{sc}}=520^{\circ} \mathrm{R}$ and $\mathrm{p}_{\mathrm{sc}}=14.7 \mathrm{psia}$:

$$
\begin{equation*}
\left(\frac{\mathrm{T}_{\mathrm{g}}}{\mathrm{k} \mathrm{~h}}\right) \frac{\mathrm{dr}}{\mathrm{r}}=0.703\left(\frac{2 \mathrm{p}}{\mu_{\mathrm{g}} \mathrm{z}}\right) \mathrm{dp} \tag{3}
\end{equation*}
$$

Integrating Equation 3 from the wellbore conditions (r wand $p_{w f}$) to any point in the reservoir (r and p) to give:

$$
\begin{equation*}
\int_{\mathrm{r}_{\mathrm{w}}}^{\mathrm{r}}\left(\frac{\mathrm{~T} \mathrm{Q}_{\mathrm{g}}}{\mathrm{kh}}\right) \frac{\mathrm{dr}}{\mathrm{r}}=0.703 \int_{\mathrm{p}_{\mathrm{wf}}}^{\mathrm{p}}\left(\frac{2 \mathrm{p}}{\mu_{\mathrm{g}} \mathrm{z}}\right) \mathrm{dp} \tag{4}
\end{equation*}
$$

Imposing Darcy's Law conditions on Equation 4, i.e.:
> Steady-state flow, which requires that Q is constant at all radii.
$>$ Homogeneous formation, which implies that k and h are constant.
gives:

$$
\left(\frac{\mathrm{TQ}_{\mathrm{g}}}{\mathrm{kh}}\right) \ln \left(\frac{\mathrm{r}}{\mathrm{r}_{\mathrm{w}}}\right)=0.703 \int_{p_{\mathrm{wf}}}^{\mathrm{p}}\left(\frac{2 \mathrm{p}}{\mu_{\mathrm{g}} \mathrm{z}}\right) \mathrm{dp}
$$

The term $\int_{p_{w f}}^{\mathrm{p}}\left(\frac{2 \mathrm{p}}{\mu_{g} \mathrm{z}}\right) \mathrm{dp}$ can be expanded to give:
$\int_{p_{w f}}^{p}\left(\frac{2 p}{\mu_{\mathrm{g}} z}\right) d p=\int_{0}^{p}\left(\frac{2 p}{\mu_{\mathrm{g}} z}\right) d p-\int_{0}^{p_{\mathrm{wf}}}\left(\frac{2 \mathrm{p}}{\mu_{\mathrm{g}} \mathrm{z}}\right) \mathrm{dp}$
Combining the above relationships yields:
$\left(\frac{\mathrm{TQ}_{\mathrm{g}}}{\mathrm{kh}}\right) \ln \left(\frac{\mathrm{r}}{\mathrm{r}_{\mathrm{w}}}\right)=0.703\left[\int_{0}^{\mathrm{p}}\left(\frac{2 \mathrm{p}}{\mu_{\mathrm{g}} \mathrm{z}}\right) \mathrm{dp}-\int_{0}^{\mathrm{p}_{\mathrm{wf}}}\left(\frac{2 \mathrm{p}}{\mu_{\mathrm{g}} \mathrm{z}}\right) \mathrm{dp}\right]$
$\mathrm{m}(\mathrm{p})=\psi=\int_{0}^{\mathrm{p}}\left(\frac{2 \mathrm{p}}{\mu_{\mathrm{g}} \mathrm{z}}\right) \mathrm{dp}=$ real gas potential or real gas pseudopressure

$\mathrm{Q}_{\mathrm{g}}=\frac{0.703 \mathrm{kh}\left(\Psi_{\mathrm{e}}-\psi_{\mathrm{w}}\right)}{\mathrm{T}\left(\ln \frac{\mathrm{r}_{\mathrm{e}}}{\mathrm{r}_{\mathrm{w}}}\right)}$
$\psi_{\mathrm{e}}=$ real gas potential as evaluated from 0 to $\mathrm{p}_{\mathrm{e}}, \mathrm{psi}^{2} / \mathrm{cp}$
$\psi_{\mathrm{w}}=$ real gas potential as evaluated from 0 to $\mathrm{P}_{\mathrm{wf}}, \mathrm{psi}^{2} / \mathrm{cp}$
$\mathrm{k}=$ permeability, md
$\mathrm{h}=$ thickness, ft
$\mathrm{r}_{\mathrm{e}}=$ drainage radius, ft
$\mathrm{r}_{\mathrm{w}}=$ wellbore radius, ft
$\mathrm{Q}_{\mathrm{g}}=$ gas flow rate, scf/day

Example

PVT data from a gas well in a Gas Field are given below:

$\mathbf{p}(\mathbf{p s i})$	$\boldsymbol{\mu}_{\mathbf{g}}(\mathbf{c p})$	\mathbf{z}
0	0.0127	1.000
400	0.01286	0.937
800	0.01390	0.882
1200	0.01530	0.832
1600	0.01680	0.794
2000	0.01840	0.770
2400	0.02010	0.763
2800	0.02170	0.775
3200	0.02340	0.797
3600	0.02500	0.827
4000	0.02660	0.860
4400	0.02831	0.896

The well is producing at a stabilized bottom-hole flowing pressure of 3600 psi . The wellbore radius is 0.3 ft and the average reservoir pressure is 4400 psi . The following additional data are available: $\mathrm{k}=65 \mathrm{mD}, \mathrm{h}=15 \mathrm{ft}, \mathrm{re}=1000 \mathrm{ft}$, and $\mathrm{T}=600^{\circ} \mathrm{R}$. Calculate the gas flow rate.

Solution:

Step 1. Calculate the term $\left(\frac{2 \mathrm{p}}{\mu_{\mathrm{g}} \mathrm{z}}\right)$ for each pressure as shown below:

$\mathbf{P , p s i a}$	$\mathbf{U}, \mathbf{c p}$	\mathbf{Z}	2p/UZ, psia/cp
0	0.0127	1	0
400	0.01286	0.937	66391
800	0.0139	0.882	130508
1200	0.0153	0.832	188537
1600	0.0168	0.794	239894
2000	0.0184	0.77	282326
2400	0.0201	0.763	312983
2800	0.0217	0.775	332986
3200	0.0234	0.797	343167
3600	0.025	0.827	348247
4000	0.0266	0.86	349711
4400	0.02831	0.896	346924

Step 2. Plot the term $\left(\frac{2 \mathrm{p}}{\mu_{\mathrm{g}} \mathrm{z}}\right)$ versus pressure

Note: Area under the curve represents $\mathrm{m}(\mathrm{p})=\psi=\int_{0}^{\mathrm{p}}\left(\frac{2 \mathrm{p}}{\mu_{\mathrm{g}} \mathrm{z}}\right) \mathrm{dp}=$ real gas potential or real gas pseudopressure

Step 3. Calculate numerically the area under the curve for each value of p.
$\mathrm{m}(\mathrm{p})=\psi=\int_{0}^{\mathrm{p}}\left(\frac{2 \mathrm{p}}{\mu_{\mathrm{g}} \mathrm{z}}\right) \mathrm{dp}=$ real gas potential or real gas pseudopressure

P, psia	$\psi, \mathbf{p s i 2} / \mathbf{c p}$
0	0
400	$1.330 \mathrm{E}+07$
800	$5.368 \mathrm{E}+07$
1200	$1.220 \mathrm{E}+08$
1600	$2.194 \mathrm{E}+08$
2000	$3.477 \mathrm{E}+08$
2400	$5.097 \mathrm{E}+08$
2800	$7.098 \mathrm{E}+08$
3200	$9.541 \mathrm{E}+08$
3600	$1.251 \mathrm{E}+09$
4000	$1.610 \mathrm{E}+09$
4400	$2.046 \mathrm{E}+09$
3600	$1.251 \mathrm{E}+09$

Step 4. Calculate the flow rate

$$
\mathrm{Q}_{\mathrm{g}}=\frac{0.703 \mathrm{kh}\left(\psi_{\mathrm{e}}-\psi_{\mathrm{w}}\right)}{\mathrm{T}\left(\ln \frac{\mathrm{r}_{\mathrm{e}}}{\mathrm{r}_{\mathrm{w}}}\right)} \quad Q_{g}=\frac{0.703(65)(15)\left(2.046 \times 10^{9}-1.251 \times 10^{9}\right)}{600\left(\ln \left(\frac{1000}{0.3}\right)\right)}=111.96 \mathrm{MMscf} / \mathrm{day}
$$

Pressure-Squared Method

This method is limited to flow calculations when the reservoir pressure is less that 2000 psi . It is considered that $(\mathrm{z} \mu \mathrm{g})$ is almost constant under a pressure range of <2000 psia. The flow rate can be calculated from the following equation:

$$
\mathrm{Q}_{\mathrm{g}}=\frac{\mathrm{kh}\left(\mathrm{p}_{\mathrm{e}}^{2}-\mathrm{p}_{\mathrm{wf}}^{2}\right)}{1422 \mathrm{~T}\left(\mu_{\mathrm{g}} \mathrm{z}\right)_{\text {avg }} \ln \left(\frac{\mathrm{r}_{\mathrm{e}}}{\mathrm{r}_{\mathrm{w}}}\right)}
$$

where
$\mathrm{Q}_{\mathrm{g}}=$ gas flow rate, Mscf/day
$\mathrm{k}=$ permeability, md
The term $\left(\mu_{\mathrm{g}} \mathrm{z}\right)_{\text {avg }}$ is evaluated at an average pressure $\overline{\mathrm{p}}$ that is defined by the following expression:

$$
\overline{\mathrm{p}}=\sqrt{\frac{\mathrm{p}_{\mathrm{wf}}^{2}+\mathrm{p}_{\mathrm{e}}^{2}}{2}}
$$

Example

Using the data given in the previous Example, re-solve for the gas flow rate by using the pressure-squared method. Compare with the exact method (i.e., real gas potential solution).

Solution

$\overline{\mathrm{p}}=\sqrt{\frac{\mathrm{p}_{\mathrm{wf}}^{2}+\mathrm{p}_{\mathrm{e}}^{2}}{2}}$
$\overline{\mathrm{p}}=\left[\frac{4400^{2}+3600^{2}}{2}\right]^{0.5}=4020 \mathrm{psia}$
$\mu \mathrm{g}=0.02618 \mathrm{cp}$
Z= 0.8778
$\mathrm{Q}_{\mathrm{g}}=\frac{\mathrm{kh}\left(\mathrm{p}_{\mathrm{e}}^{2}-\mathrm{p}_{\mathrm{wf}}^{2}\right)}{1422 \mathrm{~T}\left(\mu_{\mathrm{g}} \mathrm{z}\right)_{\text {avg }} \ln \left(\frac{\mathrm{r}_{\mathrm{e}}}{\mathrm{r}_{\mathrm{w}}}\right)}$
$Q_{g}=\frac{(65)(15)\left(4400^{2}-3600^{2}\right)}{1422(600)(0.02618)(0.8778) \ln \left(\frac{1000}{0.3}\right)}=39,233.33 \mathrm{Mscf} / \mathrm{day}$
Absolute error $=\frac{\left|39,233.33 \times 10^{3}-111.96 \times 10^{6}\right|}{111.96 \times 10^{6}} \times 100=65 \%$

Horizontal Multiple-Phase Flow

- Oil Phase
$\mathrm{Q}_{\mathrm{o}}=\frac{0.00708(\mathrm{kh})\left(\mathrm{k}_{\mathrm{ro}}\right)\left(\mathrm{p}_{\mathrm{e}}-\mathrm{p}_{\mathrm{wf}}\right)}{\mu_{\mathrm{o}} \mathrm{B}_{\mathrm{o}} \ln \left(\mathrm{r}_{\mathrm{e}} / \mathrm{r}_{\mathrm{w}}\right)}$
- Water Phase
$\mathrm{Q}_{\mathrm{w}}=\frac{0.00708(\mathrm{kh})\left(\mathrm{k}_{\mathrm{rw}}\right)\left(\mathrm{p}_{\mathrm{e}}-\mathrm{p}_{\mathrm{wf}}\right)}{\mu_{\mathrm{w}} \mathrm{B}_{\mathrm{w}} \ln \left(\mathrm{r}_{\mathrm{e}} / \mathrm{r}_{\mathrm{w}}\right)}$
The water-oil ratio is defined as:
WOR $=\frac{\mathrm{Q}_{\mathrm{w}}}{\mathrm{Q}_{\mathrm{o}}}$

- Gas Phase

In terms of the real gas potential:

$$
\mathrm{Q}_{\mathrm{g}}=\frac{(\mathrm{kh}) \mathrm{k}_{\mathrm{rg}}\left(\psi_{\mathrm{e}}-\psi_{\mathrm{w}}\right)}{1422 \mathrm{~T} \ln \left(\mathrm{r}_{\mathrm{e}} / \mathrm{r}_{\mathrm{w}}\right)}
$$

In terms of the pressure-squared:

$$
\mathrm{Q}_{\mathrm{g}}=\frac{(\mathrm{kh}) \mathrm{k}_{\mathrm{rg}}\left(\mathrm{p}_{\mathrm{e}}^{2}-\mathrm{p}_{\mathrm{wf}}^{2}\right)}{1422\left(\mu_{\mathrm{g}} \mathrm{z}\right)_{\mathrm{avg}} \mathrm{~T} \ln \left(\mathrm{r}_{\mathrm{e}} / \mathrm{r}_{\mathrm{w}}\right)}
$$

where $\mathrm{Q}_{\mathrm{g}}=$ gas flow rate, $\mathrm{Mscf} /$ day
$\mathrm{k}=$ absolute permeability, md
$\mathrm{T}=$ temperature, ${ }^{\circ} \mathrm{R}$

The instantaneous GOR, as expressed in scf/STB, is defined as:
$\mathrm{GOR}=\mathrm{R}_{\mathrm{s}}+\frac{\mathrm{Q}_{\mathrm{g}(\mathrm{scf} / \text { day })}}{\mathrm{Q}_{\mathrm{o}}(\text { STB } / \text { day })}$

THANK YOU

