Al-Ayen University
 College of Petroleum Engineering

Numerical Methods and Reservoir Simulation

Lecturer: Dr. Mohammed Idrees Al-Mossawy

L7: Principles of Finite Difference Approximation (Implicit Approximation)

Outlines

* 1D single phase flow of slightly compressible fluid in a homogeneous linear-reservoir
- Implicit Method
$>$ Matrix-Vector Formulation
\square Example - Implicit Method
* Summary

1D single phase flow of slightly compressible

fluid in a homogeneous linear-reservoir

Implicit Method

PDE $\frac{\partial^{2} p}{\partial x^{2}}=\frac{1}{\eta} \frac{\partial p}{\partial t} \quad, \quad 0<x<L, t>0$
Implicit Finite Difference $\frac{p_{i+1}^{n+1}-2 p_{i}^{n+1}+p_{i-1}^{n+1}}{(\Delta x)^{2}}=\frac{1}{\eta}\left(\frac{p_{i}^{n+1}-p_{i}^{n}}{\Delta t}\right)$
There are three unknowns for each $i ; p_{i-1}{ }^{n+1}, p_{i}^{n+1}$, and $p_{i+1}{ }^{n+1}$. The equation can be rearranged as:
$-\alpha p_{i-1}^{n+1}+(1+2 \alpha) p_{i}^{n+1}-\alpha p_{i+1}^{n+1}=p_{i}^{n}$

$$
\alpha=\frac{\eta \Delta t}{(\Delta x)^{2}}
$$

$$
-\alpha p_{i-1}^{n+1}+(1+2 \alpha) p_{i}^{n+1}-\alpha p_{i+1}^{n+1}=p_{i}^{n}
$$

$$
\alpha=\frac{\eta \Delta t}{(\Delta x)^{2}}
$$

We have $N_{x}-1$ unknowns; p_{i}^{n+1}, for $i=1,2, \ldots, N_{x}-1$; i.e., pressures at the interior grid points.

Matrix-Vector Formulation

$$
-\alpha p_{i-1}^{n+1}+(1+2 \alpha) p_{i}^{n+1}-\alpha p_{i+1}^{n+1}=p_{i}^{n}
$$

BC

For $i=1$:

$$
\begin{aligned}
& -\alpha p_{0}^{n+1}+(1+2 \alpha) p_{1}^{n+1}-\alpha p_{2}^{n+1}=p_{1}^{n} \\
& (1+2 \alpha) p_{1}^{n+1}-\alpha p_{2}^{n+1}=p_{1}^{n}+\alpha p_{0}^{n+1}
\end{aligned}
$$

7

For $i=2,3 \ldots, N_{x}-2$

$$
-\alpha p_{i-1}^{n+1}+(1+2 \alpha) p_{i}^{n+1}-\alpha p_{i+1}^{n+1}=p_{i}^{n}
$$

For $i=N_{x}-1$

$$
\begin{aligned}
& -\alpha p_{N x-2}^{n+1}+(1+2 \alpha) p_{N x-1}^{n+1}-\alpha p_{N x}^{n+1}=p_{N x-1}^{n} \\
& -\alpha p_{N x-2}^{n+1}+(1+2 \alpha) p_{N x-1}^{n+1}=p_{N x-1}^{n}+\alpha p_{N x}^{n+1}
\end{aligned}
$$

These equations can be written in a matrixform:

A is a symmetric, tri-diagonal matrix can be solved by direct methods or iterative methods

1D single phase flow of slightly compressible fluid in a homogeneous linear-reservoir

Example - Implicit Method

$$
\begin{aligned}
& \text { PDE } \frac{\partial^{2} p}{\partial x^{2}}=\frac{1}{\eta} \frac{\partial p}{\partial t}, 0<x<L, t>0 \\
& \text { IC } \quad p(x, t=0)=3000 \text { psia, } 0 \leq x \leq L \\
& \text { BC's } \quad p(x=0, t>0)=5000 \text { psia, } \\
& \text { BC's }^{\prime} \quad p(x=L, t>0)=3000 \text { psia, }
\end{aligned}
$$

Take: $L=1000$, and $\eta=5.0 \times 10^{5} \mathrm{ft}^{2} / \mathrm{day}, N_{x}=10, \Delta x=1000 / 10$

1D single phase flow of slightly compressible

 fluid in a homogeneous linear-reservoir
Example - Implicit Method

The analytical solution for this problem is available and is given by
$p(x, t)=p_{L}+\left(p_{0}-p_{L}\right)\left[\frac{x}{L}+\frac{2}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin \left(m \pi \frac{x}{L}\right) \exp \left(-m^{2} \pi^{2} \frac{\eta}{L^{2}} t\right)\right]$
where $p_{0}=3000$ psia and $p_{L}=5000$ psia
This serves us to check the accuracy of the numerical solutions computed from implicit method.

Example - Implicit Method

- Results with $\Delta t=0.002$ day.

Table 1. Comparison of Analytical and Numerical Results at $\mathbf{x}=100 \mathrm{ft}$

Time, days	Pressure, psia (Analytical solution)	Pressure, psia (Implicit numerical solution)	Absolute error, psi	Relative error, percentage
0.02	3959.000	3928.613	30.39	0.77
0.06	4366.183	4355.283	10.9	0.25
0.2	4646.089	4644.047	2.042	0.04
2	4799.980	4799.977	0.003	0.00
20	4800.000	4800.000	0.000	0.00

Example - Implicit Method

- Results with $\Delta t=0.002$ day.

Table 2. Comparison of Analytical and Numerical Results at $\mathbf{x}=500 \mathrm{ft}$

Time, days	Pressure, psia (Analytical solution)	Pressure, psia (Implicit numerical solution)	Absolute error, psi	Relative error, percentage
0.02	3000.814	3005.194	4.38	0.146
0.06	3082.454	3092.871	10.42	0.338
0.2	3525.513	3523.418	2.095	0.059
2	3999.934	3999.926	0.008	0.00
20	4000.000	4000.000	0.000	0.00

Example - Implicit Method

- Results with $\Delta t=0.02$ day.

time $=$	0.20 day
grid no: \quad pressure, psia	

| $\mathrm{i}=$ | 0 | $\mathrm{po}(\mathrm{i})=5000.00000000000$ |
| ---: | ---: | ---: | ---: | ---: |
| $\mathrm{i}=$ | 1 | $\mathrm{po}(\mathrm{i})=4631.57075031308$ |\rightarrow Abs. Rel. error $\%=0.31 \%$

Summary

- Explicit or Implicit finite difference approximations can be used to solve PDE of pressure to find the pressure distribution in porous media with respect to time.
- The finite difference approximation is considered stable if any error introduced at a grid point at a given time level does not grow exponentially at later stages of the computations.
- The explicit finite difference approximation is conditionally stable.
- The implicit finite difference approximation is unconditionally stable.

THANK YOU

