See discussions, stats, and author profiles for this publication at: [https://www.researchgate.net/publication/362116829](https://www.researchgate.net/publication/362116829_Magnetic_CeO2SrFe12O19_Nanocomposite_Synthesis_Characterization_and_Photocatalytic_Degradation_of_Methyl_Orange?enrichId=rgreq-af22bc64df6e078781f4eb02340b718b-XXX&enrichSource=Y292ZXJQYWdlOzM2MjExNjgyOTtBUzoxMTQzMTI4MTA4MjMzMzYwOUAxNjYyMDIzNTc5Mjg4&el=1_x_2&_esc=publicationCoverPdf)

[Magnetic CeO2/SrFe12O19 Nanocomposite: Synthesis, Characterization and](https://www.researchgate.net/publication/362116829_Magnetic_CeO2SrFe12O19_Nanocomposite_Synthesis_Characterization_and_Photocatalytic_Degradation_of_Methyl_Orange?enrichId=rgreq-af22bc64df6e078781f4eb02340b718b-XXX&enrichSource=Y292ZXJQYWdlOzM2MjExNjgyOTtBUzoxMTQzMTI4MTA4MjMzMzYwOUAxNjYyMDIzNTc5Mjg4&el=1_x_3&_esc=publicationCoverPdf) Photocatalytic Degradation of Methyl Orange

Article · July 2022

Some of the authors of this publication are also working on these related projects:

Peripherals, Components, and Applications of Allen-Bradley PLC [View project](https://www.researchgate.net/project/Peripherals-Components-and-Applications-of-Allen-Bradley-PLC?enrichId=rgreq-af22bc64df6e078781f4eb02340b718b-XXX&enrichSource=Y292ZXJQYWdlOzM2MjExNjgyOTtBUzoxMTQzMTI4MTA4MjMzMzYwOUAxNjYyMDIzNTc5Mjg4&el=1_x_9&_esc=publicationCoverPdf)

Project

 Prc

PhD study [View project](https://www.researchgate.net/project/PhD-study-85?enrichId=rgreq-af22bc64df6e078781f4eb02340b718b-XXX&enrichSource=Y292ZXJQYWdlOzM2MjExNjgyOTtBUzoxMTQzMTI4MTA4MjMzMzYwOUAxNjYyMDIzNTc5Mjg4&el=1_x_9&_esc=publicationCoverPdf)

RESEARCH ARTICLE-CHEMISTRY

Magnetic CeO2/SrFe12O19 Nanocomposite: Synthesis, Characterization and Photocatalytic Degradation of Methyl Orange

Saade Abdalkareem Jasim1 · Indrajit Patra2 · Ahmed M. Abdulhadi³ · Moaed E. Al-Gazally⁴ · Himanshu Sharma5 · Taif Alawsi6 · Halah T. Mohammed⁷ · Shaymaa Abed Hussein⁸ · Usama S. Altimari⁹ · Ali Thaeer Hammid10 · Cui Chem¹¹

Received: 2 March 2022 / Accepted: 9 June 2022 © King Fahd University of Petroleum & Minerals 2022

Abstract

Magnetic nanocomposite CeO₂/SrFe₁₂O₁₉ including a hard magnetic material (SrFe₁₂O₁₉) and soft magnetic material (CeO₂) was prepared by a one-step chemical co-precipitation with high-temperature (900 °C) sintering method. Its structure and properties were studied using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), vibrating-sample magnetometry (VSM), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and map analysis (MA). The testing results showed that the structure and phase of $SrFe_{12}O_{19}$ did not change by growth CeO₂ nanoparticles. SEM image and map analysis indicated that $SrFe_{12}O_{19}$ was distributed between the CeO₂ nanoparticles. Nanocomposite CeO₂/SrFe₁₂O₁₉ showed the quite high magnetic performance of 39.34 emu/g, indicating that the properties of $CeO₂/SrFe₁₂O₁₉$ were favorable to its separation, recycling and used after photocatalytic process without secondary pollution. In addition, the photocatalytic activity $CeO₂/SrFe₁₂O₁₉$ for the degradation of methyl orange (MO) was explored under UV light and results revealed the superior photocatalytic performance of MO dye with removal percentage of 88.38% within 90 min.

Keywords $CeO₂/SFFe₁₂O₁₉$ nanocomposite \cdot Co-precipitation \cdot Photocatalytic activity \cdot Degradation

 \boxtimes Cui Chem cchem2021@gmail.com

- ¹ Medical Laboratory Techniques Department, Al-Maarif University College, Al-anbar-Ramadi, Iraq
- ² An Independent Researcher, NIT Durgapur, Durgapur, West Bengal, India
- ³ Civil Engineering Department, University of Warith Al-Anbiyaa, Karbala, Iraq
- ⁴ College of Medicine, University of Al-Ameed, Karbala, Iraq
- ⁵ Department of Computer Engineering and Applications, GLA University, Mathura, India
- ⁶ Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
- ⁷ Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
- ⁸ Al-Manara College for Medical Sciences, Maysan, Iraq
- ⁹ Al-Nisour University College, Baghdad, Iraq
- ¹⁰ Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
- ¹¹ Department of Chemistry, Xian University, Xian, China

1 Introduction

Recently, the environmental pollution due to the rapid growth of different organic pollutions $[1-3]$ $[1-3]$ of industrial activities has become a prominent issue with a detrimental influence on human life [\[4](#page-7-2)[–6\]](#page-7-3). The organic pollutions are stable, non-biodegradable, toxic, carcinogenic and also lead to generation of dangerous by-products using different chemical reactions such as oxidation and hydrolysis [\[7,](#page-7-4) [8\]](#page-7-5). Among the various organic pollutions, the organic dyes such as Congo red [\[9\]](#page-7-6), methyl orange [\[8,](#page-7-5) [10\]](#page-7-7), methylene blue [\[11\]](#page-7-8), rhodamine B [\[12\]](#page-7-9) and rhodamine 6G [\[13\]](#page-7-10) are promising and must be removed from wastewater before discharge to environment. Until now, different techniques such as physical, chemical and biological [\[14–](#page-7-11)[16\]](#page-7-12) were used to different dyes treatment. Among them, photocatalytic method has attracted more attention because of its low price, non-toxicity and high efficiency [\[17–](#page-7-13)[19\]](#page-7-14). Nanostructured metal oxides such as $CeO₂$ [\[20\]](#page-7-15), $Fe₂O₃$ [\[21\]](#page-7-16) and TiO₂ [\[22\]](#page-7-17) and their binary nanocomposites such as $Bi₂O₃$ -Al₂O₃ [\[23\]](#page-7-18), CeO₂-Bi₂WO₆ [\[24\]](#page-7-19), $CeO₂$ -TiO₂ [\[25\]](#page-7-20) and TiO₂-ZnO [\[26\]](#page-7-21) have attracted

much research interest and used in photocatalytic degradation of different organic dyes. Separation of catalyst from aqueous solution is difficult, then probably produced secondary pollution and also increased costs. To overcome these problems, usage of magnetic catalyst was proposed because of simple separation of them by an external magnet [\[23](#page-7-18)[–26\]](#page-7-21).

Hexaferrite strontium ferrite ($SrFe_{12}O_{19}$), as hard magnetic materials, has excellent properties such as large saturation magnetization, good chemical stability, superior coercivity and high uniaxial magnetic crystalline anisotropy [\[27](#page-7-22)[–31\]](#page-8-0). In recent years, various binary $\text{SrFe}_{12}\text{O}_{19}$ based nanocomposites, such as $ZnFe₂O₄/SrFe₁₂O₁₉$ [\[32\]](#page-8-1), β-Bi2O3/SrFe12O19 [\[33\]](#page-8-2), Bi3O4Cl/SrFe12O19 [\[34\]](#page-8-3), $SrFe_{12}O_{19}$ @Fe₃O₄ [\[35\]](#page-8-4), CoFe₂O₄/SrFe₁₂O₁₉ [\[36](#page-8-5)[–38\]](#page-8-6), $MoS_2-SrFe_{12}O_{19}$ [\[39\]](#page-8-7) and BiOCl-SrFe₁₂O₁₉ [\[40\]](#page-8-8), were synthesized and used in photocatalytic degradation of different organic dyes under light irradiation [\[32–](#page-8-1)[34\]](#page-8-3).

To the best of our knowledge, different magnetic composites based SrFe $_{12}O_{19}$ were synthesized using sol–gel [\[32,](#page-8-1) [38\]](#page-8-6), hydrothermal [\[34,](#page-8-3) [35,](#page-8-4) [37\]](#page-8-9), chemical co-precipitation [\[36\]](#page-8-5) and characterized. But, there is less reported to binary and ternary composites-based $SrFe_{12}O_{19}$ with rare earth transition metal oxide like $CeO₂$ [\[18\]](#page-7-23) and Bi₂O₃ [\[12,](#page-7-9) [33\]](#page-8-2). Therefore, in this paper, the $CeO₂/SrFe₁₂O₁₉$ binary composite magnetic photocatalyst was prepared by one-step chemical co-precipitation with high-temperature sintering method, characterized and the photocatalytic activity of was evaluated by methyl orange (MO) photodegradation.

2 Experimental

2.1 Materials and Characterization

All the chemical and reagents used in this paper were of high purity and were purchased from Merck and Sigma and used without further purification. FT-IR spectra were recorded on a 5DX FTIR spectrometer (Nicolet Co., USA), using KBr pellets in the range of 4000–400 cm−1. The crystal structure and phases were identified via X-ray powder diffraction (XRD) using a Bruker Advance D8 diffractometer (Cu Kα radiation, $\lambda = 1.54056$ Å). The magnetic properties were investigated using a vibrating sample magnetometer (VSM, Meghnatis Daghigh Kavir Co., Iran) with applied magnetic field of up to 14 KOe. The morphologies of samples were recorded by scanning electron microscopy (SEM, JEOL-JSM 7600 F).

2.2 Synthesis of CeO2/SrFe12O19 Nanocomposite

The $CeO₂/SFFe₁₂O₁₉$ nanocomposite was synthesized by one-step chemical co-precipitation with high-temperature sintering method. First mixed $Sr(NO₃)₂$ (0.211 g), $Ce(NO₃)₂ \bullet 9H₂O (0.868 g)$ and $Fe(NO₃)₃ \bullet 9H₂O (4.02 g)$

Fig. 1 FT-IR spectra of **a** CeO₂ and **b** CeO₂/SrFe₁₂O₁₉ nanocomposite

with molar ratio of 1:2:10 together. Then added the 50 mL distilled water and stirred for 20 min. After that, under vigorous stirring, the pH value of the solution is achieve to 12 by adding 0.5 M NaOH and the suspension was stirred at 70 °C for 24 h. Subsequently, the intermediate brown precipitates could be obtained using filtration, washing and drying. Then, the intermediate brown powder was ground by mortar in ceramic crucible and put into a muffle furnace, which was annealed at 900 °C for 3 h. The black powders washed, dried and characterized.

2.3 Photocatalytic Degradation of Methylene Blue

The photocatalytic activity of the $CeO₂/SrFe₁₂O₁₉$ was studied by the degradation of MO under UV light irradiation of a 300 W Xe lamp at the natural pH value. A 50 mL of 20 mg/L MO aqueous solution and suitable amount of $CeO₂/SrFe₁₂O₁₉$ (0.01 or 0.02 g) were added into container and stirred for 1 h in the dark. After that, the solution was irradiated by UV light. After a given time, about 4 mL of the mixture was withdrawn and the catalyst was separated using an external magnet. Then, the absorption of solution was monitored with a UV–Vis spectrophotometer. The photocatalytic experiments were conducted three times with statistically similar results each time. The degradation rate of MO was calculated by the following equation, where C_0 and C_t represent the initial and different reaction time absorbance of MO.

$$
R(\%) = \{ (C_o - C_t) \times 100 \} / C_o \tag{1}
$$

3 Results and Discussions

3.1 FT-IR

The FT-IR spectrum of $CeO₂/SrFe₁₂O₁₉$ is shown in Fig. [1.](#page-2-0) It can be seen that the metal oxygen (Fe–O, Sr–O and Ce–O)

Fig. 2 XRD pattern of CeO₂/SrFe₁₂O₁₉ nanocomposite

stretching vibration frequencies of $SrFe_{12}O_{19}$ and CeO_2 appeared at 442 and 612 cm⁻¹ [\[11,](#page-7-8) [21\]](#page-7-16). A peak appeared at 867 cm⁻¹ confirms Ce–O stretching vibration [\[21,](#page-7-16) [41\]](#page-8-10). The peak observed at 1446 cm^{-1} suggests that the existence of stretching vibration of NO_3^- ion [\[21,](#page-7-16) [41\]](#page-8-10) may be ascribed the remained of metal nitrate precursors. In addition, two broad peaks appeared at 1639 and 3420 cm⁻¹ confirm the O–H bending and stretching vibration of water molecules adsorbed on the surface of $CeO₂/SrFe₁₂O₁₉$ nanocomposite [\[28,](#page-7-24) [32,](#page-8-1) [33\]](#page-8-2).

3.2 XRD Pattern

Figure [2](#page-3-0) illustrates the XRD pattern of $CeO₂/SrFe₁₂O₁₉$ nanocomposite. The characteristic peaks of $SrFe₁₂O₁₉$ were observed at 2θ values of 30.1, 32.1, 34.3, 36.5, 37.3, 41.2, 43.5, 55.7, 56.9, 63.2, 67.8 and 72.9° corresponds to (110), (107), (114), (201), (108), (205), (206), (217), (218), (220), (2014) and (317) crystallographic planes are precisely well matched to the pure hexagonal $SrFe_{12}O_{19}$ structure with JCPDS card no: 24–1207 [\[29,](#page-8-11) [32\]](#page-8-1). Also, the characteristic peaks of cubic $CeO₂$ nanoparticles were observed at 2 θ values of 28.8, 33.1, 37.6, 56.7, 59.5, 69.9, 76.9 and 79.2° corresponding to charact corresponds to eristic (111), (200), (220), (311), (222), (400), (331), and (420) crystallographic plane well matched to the pure $CeO₂$ nanoparticles with JCPDS card no 34–0394 [\[21,](#page-7-16) [34,](#page-8-3) [42\]](#page-8-12).

The average crystallite size of $CeO₂$ and $SrFe₁₂O₁₉$ nanoparticles was calculated using Debye–Scherrer formula based on the high intensity peaks appearing at 2θ value of 28.8° for CeO₂ and 34.3° for SrFe₁₂O₁₉ and was measured as 43.52 and 44.13 nm, respectively, which also agree well with the nanoparticle size shown in the SEM images (Fig. [3\)](#page-3-1).

3.3 SEM Images

The morphology of $CeO₂/SrFe₁₂O₁₉$ nanocomposite is observed by using SEM images as represented in Fig. [3.](#page-3-1) The images confirms a spherical shape with a rough surface. The average particle size was distributed in the range of 25–50 nm. The molecular mass of $SrFe_{12}O_{19}$ was higher than that of $CeO₂$, confirms the $SrFe₁₂O₁₉$ particles absorbed more electron than $CeO₂$ particles and causes that the low molecular mass material $(CeO₂)$ displayed more bright. Therefore, the $SrFe_{12}O_{19}$ regions were possibly dark [\[32\]](#page-8-1).

3.4 EDX/elemental Mapping

Elemental analytical data (Sr, Ce, Fe and O) and distribution of them on $CeO₂/SrFe₁₂O₁₉$ nanocomposite were obtained by EDX/elemental mapping as represented in Figs. [4](#page-4-0) and [5,](#page-5-0) respectively. Analysis was conducted at many different points and the atom percentage of each element is shown in the inset of Fig. [4.](#page-4-0) As seen in Fig. [5,](#page-5-0) the distribution of all atoms in $CeO₂/SFFe₁₂O₁₉$ nanocomposite is almost homogeny and confirms the preparation of core–shell CeO₂/SrFe₁₂O₁₉ nanocomposite.

Fig. 3 SEM images of CeO₂/SrFe₁₂O₁₉ nanocomposite

3.5 VSM

The magnetic hysteresis loop of $CeO₂/SFFe₁₂O₁₉$ nanocomposite is represented in Fig. [6.](#page-5-1) As shown in Fig. [6,](#page-5-1) the hysteresis loop area of $CeO₂/SrFe₁₂O₁₉$ nanocomposite is wide with saturation magnetization (M_s) of 39.34 emu/g, and a remnant magnetization (M_r) of 21.5 emu/g indicates that the sample is a kind of hard-magnetic materials [\[12,](#page-7-9) [32,](#page-8-1) [33\]](#page-8-2). The coercivity (H_c) of $CeO₂/SrFe₁₂O₁₉$ nanocomposite is 5384 Oe, indicating that it possesses a good anti-demagnetization ability, which was beneficial to its recycling from solution after used as photocatalyst using external magnet and also reused it again in photodegradation of different organic dyes such as methylene blue [\[32,](#page-8-1) [33\]](#page-8-2) and rhodamine B [\[12,](#page-7-9) [34\]](#page-8-3).

3.6 Photocatalytic Activity

Methyl orange is an aromatic anionic dye which is stable, toxic and colorant and causes serious environmentally problems [\[43,](#page-8-13) [44\]](#page-8-14). Then, removal of MO dye is a major environmental issue before discharging to receiving water using different route such as adsorption [\[45](#page-8-15)[–47\]](#page-8-16) and photocatalytic degradation [\[10,](#page-7-7) [20,](#page-7-15) [48\]](#page-8-17). Recently, photocatalytic degradation of MO has been applied by different com-pounds such as transition metal oxides Fe₂O₃ [\[20,](#page-7-15) [21,](#page-7-16) [30\]](#page-8-18), ZnO $[48]$ and TiO₂ $[22]$, binary heterojunction Bi₂O₃-Al₂O₃ [\[23\]](#page-7-18), AgBr/g-C₃N₄ [\[49\]](#page-8-19) and TiO₂/ZnO [\[26\]](#page-7-21), strontium hex-aferrite [\[28\]](#page-7-24), ternary heterojunction Ag/TiO₂/biochar [\[10\]](#page-7-7), attapulgite-SnO₂-TiO₂ [\[50\]](#page-8-20) AgBr@Ag₃PO₄/Fe₃O₄ [\[51\]](#page-8-21) and

PEDOT/NiO/Fly ash $[52]$, CdS/CeO₂/Ag₃PO₄ [\[53\]](#page-8-23) and also quaternary heterojunction PANI-CdS/CeO₂/Ag₃PO₄ [\[54\]](#page-8-24).

The photocatalytic property of $CeO₂/SrFe₁₂O₁₉$ nanocomposite on photodegradation of MO under UV light was analyzed by monitoring of UV–Vis spectra of MO solution (Fig. [7\)](#page-5-2). As seen in Fig. [7,](#page-5-2) the maximum value of absorbance peak of MO solution is observed at 472 nm that the peak only become decrease slowly with respect to the increases in irradiation time, confirming sufficient photocatalytic degradation of MO dye. Also, the peak did not shift and no other peaks were appeared, predicting that the pure photochemical reaction was happened [\[33\]](#page-8-2).

3.7 Effect of Irradiation Time and Catalyst Dose

The influence of irradiation time and catalyst dose on photocatalytic performance of MO is represented in Fig. [8.](#page-6-0) In the first 5 min of irradiation time, about 32.12% and 43.46% of MO was degraded using 0.01 and 0.02 g of $CeO₂/SrFe₁₂O₁₉$ as photocatalyst, respectively. While at 90 min irradiation time, the percentage of MO photodegradation were 73.26 and 88.38%, respectively.

Compared with the photodegradation performance of other compounds (Table [1\)](#page-6-1), it was noted that the CeO2/SrFe12O19 exhibited remarkably better photocatalytic activity.

The photodegradation performance of $CeO₂/SFFe₁₂O₁₉$ was evaluated for 5 cycles. After each experiment, the photocatalyst collected by centrifuged, washed twice with distilled water, dried at 80 °C and then used for degradation of MO in similar conditions. Reusability performance results are

Fig. 5 Elemental distribution **a** Ce, **b** Sr, **c** Fe and **d** O images of CeO₂/SrFe₁₂O₁₉ nanocomposite

Fig. 6 Hysteresis loops of CeO₂/SrFe₁₂O₁₉ nanocomposite

 1.6 1.2 Absorbance (a.u.) -15 -30 0.8 \cdot 60 -90 0.4 $\frac{0}{3}$ 450 550 400 500 $\overline{600}$ Wavelength (nm)

Fig. 7 Time-dependent UV–Vis spectra of MO solution in the presence of CeO₂/SrFe₁₂O₁₉ nanocomposite

shown in Fig. [9.](#page-6-2) As can be seen in Fig. [9,](#page-6-2) it was clear that CeO₂/SrFe₁₂O₁₉ as photocatalyst showed an excellent activity after 5 cycles and a slight amount $(< 5\%)$ in photodegradation activity was observed.

75

90

Fig. 8 The effect of irradiation time on removal percentage of MO dye in the presence of \mathbf{a} 0.01 and \mathbf{b} 0.02 g of CeO₂/SrFe₁₂O₁₉ nanocomposite

Table 1 The photodegradation performance of $CeO₂/SrFe₁₂O₁₉$ and other compounds

Adsorbent	Photodegradation percentage $(\%)$	Reference
$CeO2/SrFe12O19$	88.38	This work
Fe ₂ O ₃	95%	$\lceil 21 \rceil$
TiO ₂ /ZnO	97%	$\lceil 26 \rceil$
$Bi_2O_3-Al_2O_3$	60	$\lceil 23 \rceil$
$MoS2/Fe3O4$	79	[54]
$TiO2$ powder	24	$\lceil 22 \rceil$
Ag/TiO ₂ /biochar	97.5	$\lceil 10 \rceil$
α -Fe ₂ O ₃ @ carbon core-shell	85	$\left[55\right]$
SrFe ₁₂ O ₁₉	95	[28]

Fig. 9 Reusability experiment of $CeO₂/SrFe₁₂O₁₉$ nanocomposite for 5 cycles

3.8 Longmuir Isotherm

 0.01 0.02

Linear (0.01)

Linear $(0,0)$

 $\mathbf{3}$

 $\overline{2}$

 $\ln(C_{\rm o}/C_{\rm t})$

The kinetic analysis of the degradation of MO dye using $CeO₂/SrFe₁₂O₁₉$ nanocomposite by Langmuir model was investigated and the linear relationship between $ln(C_0/C_t)$ and time is confirmed by pseudo first-order kinetic as shown in Fig. [10.](#page-6-3)

A suitable mechanism for the photodegradation of methyl orange using CeO₂/SrFe₁₂O₁₉ nanocomposite was proposed based on the above results, as demonstrated by following equations [\[11,](#page-7-8) [21,](#page-7-16) [28,](#page-7-24) [30,](#page-8-18) [32\]](#page-8-1):

$$
CeO2/SrFe12O19 + h\nu \to e-(CeO2) + h+(SrFe12O19)
$$
\n(2)

$$
e^{-}(CeO_2) + O_2 \to O_2^{(-)} \tag{3}
$$

$$
h^+(\text{SrFe}_{12}\text{O}_{19}) + \text{H}_2\text{O} \rightarrow \text{H}^\circ + \text{OH}^\circ \tag{4}
$$

$$
H^{\circ} + O_2^{\circ -} + OH^{\circ} + MO \rightarrow degradation products
$$
 (5)

For photodegradation of organic dyes using different photocatalysts, there are several steps [\[28\]](#page-7-24) such as diffusion and adsorption of dye on the surface of catalyst, adsorption of light by catalyst for preparation of e−/h+ pair (charge separation), various reactions to produce active radicals and finally degradation of dye by active radicals H° , O₂[°] and OH[°] [\[11,](#page-7-8) [21,](#page-7-16) [28,](#page-7-24) [30,](#page-8-18) [32\]](#page-8-1).

4 Conclusions

We have successfully prepared a magnetic nanocomposite $CeO₂/SrFe₁₂O₁₉$ photocatalyst by a one-step chemical coprecipitation with high-temperature sintering method. High magnetic performance of $CeO₂/SrFe₁₂O₁₉$ predicts the ease separation of $CeO₂/SrFe₁₂O₁₉$, to its recycling and reused

without secondary pollution. The photocatalytic potential of $CeO₂/SrFe₁₂O₁₉$ illustrated that the percentage of MO degradation was up to 88.38% after UV light irradiation for 90 min. The photocatalytic data revealed that the degradation of MO followed by Langmuir isotherm as pseudo-first-order kinetic model.

Author Contribution S.A. Jasim, A.M. Abdulhadi, M.E. Al-Gazally and T. Alawsi collected the FT-IR, XRD and VSM analysis, revised the paper. I. Patra and H. Sharma revised the paper, recorded the SEM/EDX and DSC analysis. H.T. Mohammed, S.A. Hussein, U.S. Altimari, A.T. Hammid designed and collected the photodegradation data, revised the paper. C. Chem supervised, wrote and revised the paper. All authors discussed the results and contributed to the final manuscript.

Declarations

Conflict of interest The authors declare that there is no conflict of interest.

References

- 1. He, L.; Yang, C.; Ding, J.; Lu, M.; Chen, C.; Wang, G.; Yang, S.S.: Fe, N-doped carbonaceous catalyst activating periodate for micropollutant removal: Significant role of electron transfer. Appl. Catal. B Environ. **303**, 120880 (2022)
- 2. Li, G.; Huang, S.; Zhu, N.; Yuan, H.; Ge, D.; Wei, Y.: Defectrich heterojunction photocatalyst originated from the removal of chloride ions and its degradation mechanism of norfloxacin. Chem. Eng. J. **421**, 127852 (2021)
- 3. Li, G.; Huang, S.; Zhu, N.; Yuan, H.; Ge, D.: Near-infrared responsive upconversion glass-ceramic@BiOBr heterojunction for enhanced photodegradation performances of norfloxacin. J. Hazard. Mater. **403**, 123981 (2021)
- 4. Liu, Y.; Zhang, Q.; Yuan, H.; Luo, K.; Li, J.; Hu, W.; Bazaka, K.: Comparative study of photocatalysis and gas sensing of ZnO/Ag nanocomposites synthesized by one- and two-step polymernetwork gel processes. J. All. Compd. **868**, 158723 (2021)
- 5. Cheng, J.; Tan, Z.; Xing, Y.; Shen, Z.; Zhang, Y.; Liu, L.; Liu, S.: Exfoliated conjugated porous polymer nanosheets for highly efficient photocatalytic hydrogen evolution. J. Mater. Chem. A Mater. Energy Sustain. **9**, 5787–5795 (2021)
- 6. Chen, F.; Ma, J.; Zhu, Y.; Li, X.; Yu, H.; Sun, Y.: Biodegradation performance and anti-fouling mechanism of an ICME/electrobiocarriers-MBR system in livestock wastewater (antibioticcontaining) treatment. J. Hazard. Mater. **426**, 128064 (2022)
- 7. Chen, C.; Yang, S.; Ding, J.;Wang, G.; Zhong, L.; Zhao, S.; Ren, N.: Non-covalent self-assembly synthesis of AQ2S@rGO nanocomposite for the degradation of sulfadiazine under solar irradiation: The indispensable effect of chloride. Appl. Catal B Environ. **298**, 120495 (2021)
- 8. Naikwade, A.G.; Jagadale, M.B.; Kale, D.P.; Gophane, A.D.; Garadkar, K.M.; Rashinkar, G.S.: Photocatalytic degradation of methyl orange by magnetically retrievable supported ionic liquid phase photocatalyst. ACS Omega **5**, 131–144 (2020)
- 9. You, J.; Liu, C.; Feng, X.; Lu, B.; Xia, L.; Zhuang, X.: In situ synthesis of ZnS nanoparticles onto cellulose/chitosan sponge for adsorption–photocatalytic removal of Congo red. Carbohydr. Polym. **288**, 119332 (2022)
- 10. Shan, R.; Lu, L.; Gu, J.; Zhang, Y.; Yuan, H.; Chen, Y.; Luo, B.: Photocatalytic degradation of methyl orange by Ag/TiO2/Biochar

composite catalysts in aqueous solution. Mater. Sci. Semiconduct. Process. **114**, 105088 (2020)

- 11. Vatanparast, M.; Saeidi, L.: Sonochemical-assisted synthesis and characterization of $CeO₂$ nanoparticles and its photocatalytic properties. J Mater. Sci: Mater. Electron. **29**, 7107–7113 (2018)
- 12. Xie, T.; Yang, J.; Peng, Y.; Wang, J.; Liu, S.; Xu, L.; Liu, C.: β- $Bi₂O₃/SrFe₁₂O₁₉$ magnetic photocatalyst: facile synthesis and its photcatalytic activity. Mater. Technol. **34**, 843–850 (2019)
- 13. Madkour, M.; Allam, O.G.; Abdel Nazeer, A.; Amin, M.O.; Al-Hetlani, E.: $CeO₂$ -based nanoheterostructures with p-n and n-n heterojunction arrangements for enhancing the solar-driven photodegradation of rhodamine 6G dye. J. Mater. Sci: Mater. Electron. **30**, 10857–10866 (2019)
- 14. Katheresan, V.; Kansedo, J.; Lau, S.Y.: Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. **6**, 4676–4697 (2018)
- 15. Sharma, S.; Kaur, A.: Various methods for removal of dyes from industrial effluents-A review. Ind. J. Sci. Technol. **11**, 1–21 (2018)
- 16. Bożecka, A.M.; Orlof-Naturalna, M.M.; Kopeć, M.: Methods of dyes removal from aqueous environment. J. Ecol. Eng. **22**, 111–118 (2021)
- 17. Yan, H., Zhao, M., Feng, X., Zhao, S., Zhou, X., Li, S., Yang, C.: PO₄³⁻ coordinated robust single-atom platinum catalyst for selective polyol oxidation. ANGEWANDTE CHEMIE-INT. e.202116059 (2022)
- 18. Wang, S.; Gao, H.; Fang, L.; Hu, Q.; Sun, G.; Chen, X.; Yang, H.: Synthesis of novel CQDs/CeO2/SrFe12O19 magnetic separation photocatalysts and synergic adsorption-photocatalytic degradation effect for methylene blue dye removal. Chem. Eng. J. Adv. **6**, 100089 (2021)
- 19. Ziaadini, F.; Mostafavi, A.; Shamspur, T.; Fathirad, F.: Photocatalytic degradation of methylene blue from aqueous solution using $Fe₃O₄ @ SiO₂ @ CeO₂ core-shell magnetic nanostructure as$ an effective catalyst. Adv. Environ. Technol. **2**, 127–132 (2019)
- 20. Gnanam, S.; Rajendran, V.: Facile sol-gel preparation of Cd-doped cerium oxide $(CeO₂)$ nanoparticles and their photocatalytic activities. J. All. Compd. **735**, 1854–1862 (2018)
- 21. Khalaji, A.D.; Machek, P.; Jarosova, M.: α-Fe₂O₃ nanoparticles: Synthesis, characterization, magnetic properties and photocatalytic degradation of methyl orange. Adv. J. Chem. A **4**, 317–326 (2021)
- 22. Bian, Y.; Zheng, G.; Ding, W.; Hu, L.; Sheng, Z.: Magnetic field effect on the photocatalytic degradation of methyl orange by commercial TiO2 power. RSC Adv. **11**, 6284–6291 (2021)
- 23. Hakimi, M.; Morvaridi, M.; Hosseini, H.A.; Alimard, P.: Preparation, characterization, and photocatalytic activity of $Bi₂O₃ - Al₂O₃$ nanocomposite. Polyhedron **170**, 523–529 (2019)
- 24. Issarapanacheewin, S.; Wetchakun, K.; Phanichphant, S.; Kangwansupamonkon, W.; Wetchakun, N.: Efficient photocatalytic degradation of rhodamine B by a novel $CeO₂/Bi₂WO₆$ composite film. Catal. Today **278**, 280–290 (2016)
- 25. Kumar, S.S.; Lellala, K.; Ashok, M.; Piryadharsan, A.; Sanjeeviraja, C.; Rajendran, A.: Green synthesis of CeO₂-TiO₂ compound using Cleome chelidonii leaf extract for excellent photocatalytic activity. J. Mater. Sci: Mater. Elect. **29**, 14022–14030 (2018)
- 26. Zha, R.; Nadimicherla, R.; Guo, X.: Ultraviolet photocatalytic degradation of methyl orange by nanostructured $TiO₂/ZnO$ heterojunctions. J. Mater. Chem. A **3**, 6565–6574 (2015)
- 27. Jing, P.; Du, J.; Wang, J.; Wei, J.; Pan, L.; Li, J.; Liu, Q.: Width-controlled M-type hexagonal strontium ferrite (SrFe₁₂O₁₉) nanoribbons with high saturation magnetization and superior coercivity synthesized by electrospinning. Sci. Rep. **5**, 15089 (2015)
- 28. Mohammadi, K.; Sadeghi, M.; Azimirad, R.: Facile synthesis of SrFe₁₂O₁₉ nanoparticles and its photocatalyst application. J. Mater. Sci: Mater. Electron. **27**, 10042–10047 (2017)

- 29. Sahoo, J.K.; Konar, M.; Rath, J.; Kuimar, D.; Sahoo, H.: Hexagonal strontium ferrite: cationic dye adsorption and antibacterial activity. Sep. Sci. Technol. **55**, 415–430 (2020)
- 30. Bayla, A.: Solvothermal synthesis of pure $SrFe₁₂O₁₉$ hexaferrite nanoplatelets. J. Supercond. Nov, Magn. **27**, 877–880 (2014)
- 31. Hedayati, K.; Behesht-Ara, Z.; Ghanbari, D.: Preparation and characterization of various morphologies of $\text{SrFe}_{12}\text{O}_1$ ⁹ nano-structures: investigation of magnetization and coercivity. J. Mater. Sci: Mater. Electron. **28**, 1–9 (2017)
- 32. Xie, T.; Xu, L.; Liu, C.; Wang, Y.: Magnetic composite $ZnFe₂O₄/SrFe₁₂O₁₉$: preparation, characterization, and photocatalytic activity under visible light. Appl. Surface Sci. **273**, 684–691 (2013)
- 33. Xie, T.; Liu, C.; Xu, L.; Yang, J.; Zhou, W.: Novel heterojunction $Bi₂O₃/SrFe₁₂O₁₉$ magnetic photocatalyst with highly enhanced photocatalytic activity. J. Phys. Chem. C **117**, 24601–24610 (2013)
- 34. Wang, H.; Xu, L.; Liu, C.; Jiang, Z.; Feng, Q.; Wu, T.; Wang, R.: A novel magnetic photocatalyst Bi3O4Cl/SrFe12O19: fabrication, characterization and its photocatalytic activity. Cer. Internat. **46**, 460–467 (2020)
- 35. Viet Nga, T.T.; Thi Lan, N.: Fabrication and exchange-spring properties of SrFe₁₂O₁₉@Fe₃O₄ nanocomposites with core-shell structure. Mater. Chem. Phys. **251**, 123084 (2020)
- 36. Dhabekar, K.; Mohan Kant, K.: Preparation and magnetization dynamics of CoFe2O4-SrFe12O19 nanocomposites. J. Mater. Sci: Mater. Electron. **30**, 21011–21017 (2019)
- 37. Rezaei, E.; Rezanezhad, A.; Hajalilou, A.; Saleh Ghadimi, L.; Abouzari-Lotf, E.; Arsalani, N.: Electrochemical behavior of SrFe₁₂O₁₉/CoFe₂O₄ composite nanoparticles synthesized via onepot hydrothermal method. J. All. Compd. **789**, 40–47 (2019)
- 38. Maltoni, P.; Sarkar, T.; Barucca, G.; Varvaro, G.; Locardi, F.; Peddis, D.; Mathieu, R.: Tuning the magnetic properties of hard-soft $SrFe_{12}O_{19}$ @CoFe₂O₄ nanostructures via composition/interphase coupling. J. Phys. Chem. C **125**, 5927–5936 (2021)
- 39. Lu, Y.; Xu, L.; Liu, C.: Magnetically separable and recyclable photocatalyst MoS2-SrFe12O19 with p-n heterojunction: Fabrication, characterization, and photocatalytic mechanism. Appl. Organomet. Chem. **34**(1), 5288 (2020)
- 40. Xie, T.; Xu, L.; Liu, C.; Yang, J.; Wang, M.: Magnetic composite BiOCl–SrFe₁₂O₁₉: a novel p–n type heterojunction with enhanced photocatalytic activity. Dalton Trans. **43**, 2211–2220 (2014)
- 41. Negi, K.; Kumar, M.; Singh, G.; Chauhan, S.; Chauhan, M.S.: Nanostructured $CeO₂$ for selective-sensing and smart photocatalytic applications. Cer. Int. **44**, 15281–15289 (2018)
- 42. Saadoon, S.J.; Jarosova, M.; Machek, P.; Kadhim, M.M.; Ali, M.H.; Khalaji, A.D.: Methylene blue photodegradation using assynthesized CeO2 nanoparticles. J. Chinese Chem. Soc. **69**(2), 280–288 (2022)
- 43. Yuvaraja, G.; Chen, D.Y.; Pathak, J.L.; Long, J.; Subbaiah, M.V.; Wen, J.C.; Pan, C.L.: Preparation of novel aminated chitosan schiff's base derivative for the removal of methyl orange dye from aqueous environment and its biological applications. Int. J. Biol. Macromol. **146**, 1100–1110 (2020)
- 44. Janani, B.; Al-Mohaimeed, A.M.; Raju, L.L.; Al Farraj, D.A.; Thomas, A.M.; Khan, S.S.: Synthesis and characterizations of hybrid PEG-Fe₃O₄ nanoparticles for the efficient adsorptive removal of dye and antibacterial, and antibiofilm applications. J. Environ. Health Sci. Eng. **19**, 389–400 (2021)
- 45. Lafi, R.; Hafiane, A.: Removal of methyl orange (MO) from aqueous solution using cationic surfactants modified coffee waste (MCWs). J. Taiwan Inst. Chem. Eng. **58**, 424–433 (2016)
- 46. Iwuozor, K.O.; Ighalo, J.O.; Emenike, E.C.; Ogunfowora, L.A.; Igwegbe, C.A.: Adsorption of methyl orange: A review on adsorbent performance. Curr. Res. Green Sustain Chem. **4**, 100179 (2021)
- 47. Debnath, A.; Chattopadhyay, K.K.; Saha, B.: Methyl orange adsorption onto simple chemical route synthesized crystalline α-Fe2O3 nanoparticles: kinetic, equilibrium isotherm, and neural network modeling. Desalin. Water Treat **57**, 13549–13560 (2016)
- 48. Isai, K.A.; Shrivastava, V.S.: Photocatalytic degradation of methyl orange using ZnO and Fe doped ZnO: A comparative study. Iran J. Catal. **9**, 259–268 (2019)
- 49. Ghattavi, S.; Nezamzadeh-Ejhieh, A.: A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: Focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers. Compos. B Eng. **183**, 107712 (2020)
- 50. Zhang, L.; Lv, F.; Zhang, W.; Li, R.; Zhong, H.; Zhao, Y.; Zhang, Y.; Wang, X.: Photodegradation of methyl orange by attapulgite- $SnO₂$ -TiO2 nanocomposites. J. Hazard. Mater. **171**, 294–300 (2009)
- 51. Wang, Z., Yin, L., Chen, Z., Zhou, G., Shi, H.: Photodegradation of methyl orange using magnetically recoverable AgBr@Ag3PO4/Fe3O4 photocatalyst under visible light. Nanomate. Environ. Appl. 150150 (2014)
- 52. Dagar, A.; Narula, A.K.: Photo-degradation of methyl orange under visible light by PEDOT/NiO/Fly ash cenosphere. Mater. Chem. Phys. **183**, 561–570 (2016)
- 53. Taddesse, A.M.; Bekele, T.; Diaz, I.; Adgo, A.: Polyaniline supported CdS/CeO2/Ag3PO4 nanocomposite: An "A-B" type tandem n-n heterojunctions with enhanced photocatalytic activity. J. Photochem. Photobiol. A Chem. **406**, 113005 (2021)
- 54. Lin, C.; Wang, X.; Zhou, Q.; Wen, C.; Su, S.; Xiang, J.; Cheng, P.; Hu, X.; Li, Y.; Wang, X.; Gao, X.; Nozel, R.; Zhou, G.; Zhang, Z.; Liu, J.: Magnetically recyclable MoS₂/Fe₃O₄ hybrid composite as visible light responsive photocatalyst with enhanced photocatalytic performance. ACS Sustain. Chem. Eng. **7**, 1673–1682 (2019)
- 55. Munusamy, G.; Mani, R.; Varadharajan, K.; Narasimhan, S.; Munusamy, C.; Chandrasekaran, B.: α-Fe₂O₃ @carbon core-shell nanostructure for luminescent upconversion and photocatalytic degradation of methyl orange. Res. Chem. Intermed. **46**, 715–736 (2020)

[View publication stats](https://www.researchgate.net/publication/362116829)