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Determination of centroid by integration

The centroid of an area bounded by analytical curves (i.e., curves defined by algebraic equations) is usually
determined by evaluating the integrals. Denoting by X,; and y,;the coordinates of the centroid of the
element dA, we write

.

Q, =TA = | xadA
' ] If the area A is not already known, it can also be computed

r from these elements
Q. =yA = | y dA

When a line is defined by an algebraic equation, its centroid can be determined by evaluating the integrals
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Vertical element

Centroids and areas of differential elements

Horizontal element

Polar element
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Example
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Determine by direct integration
the location of the centroid of a
parabolic spandrel.

Solution 1
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Determination of the Constant k. The value of k is determined h}? sub-
ﬁ-l‘ll’llt]l’lg xr = a and 1t y = b into the given equation. We have b = ka® or
k = b/a’. The equation of the curve is thus
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Vertical Differential Element. We choose the differential element shown
and find the total area of the fi igure.
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The first moment of the differential element with respect to the y axis is
x, dA; hence, the first moment of the entire area with respect to this axis is

F A a 2
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Since Q, = XA, we have
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Likewise, the first moment of the differential element with respect to the
x axis is ijy dA, and the first moment of the entire area is
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Since ), = yA, we have
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Determine by direct integration
the location of the centroid of a
parabolic spandrel.

Solution 2

dA = (a —x) dy
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Horizontal Differential Element. The same results can he obtained by
Ennsid{rring a horizontal element. The first moments of the area are
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To determine ¥ and y, the expressions obtained are again substituted into
the equations defining the centroid of the area.



Second moment, or moment of inertia, of an area

Consider, for example, a beam of uniform cross section where the internal forces

in any section of the beam are distributed forces whose magnitudes AF = k y AA

vary linearly with the distance y between the element of area AA and an axis

passing through the centroid of the section. This axis, represented by the x axis in
AF =ky AA the given figure, is known as the neutral axis of the section. The forces on one
™ “ side of the neutral axis are forces of compression, while those on the other side
are forces of tension; on the neutral axis itself the forces are zero.

The magnitude of the resultant R of the elemental forces AF which act over the
entire section is:

H—[kydﬂ—kjydfx

The last integral obtained is recognized as the first moment Q.. of the section about the x axis; it is
equal to YA and is thus equal to zero, since the centroid of the section is located on the x axis. The
system of the forces AF thus reduces to a couple. The magnitude M of this couple (bending
moment) must be equal to the sum of the moments of the elemental forces. Integrating over the
entire section, we obtain

M = J krf dA = k J' rf dA

The last integral is known as the second moment, or moment of inertia, of the beam section with
respect to the x axis and is denoted by I,..




Similarly, we can derive the moment of inertia (I,) of the area A with respect to the y axis. These are summarized by the

following set of equations:
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Example: Determine the moment of inertia of a triamgl{: with respect to its base.

A lTiungle of base b and h{!ight h is drawn; the x axis is chosen to coincide
with the base. A differential strip parall{:l to the x axis is chosen to be dA. Since
all purﬁ(m:-; of the s;trip are at the same distance from the x axis, we write

dl, = yz dA dA =1 ffy

Using similar triangles, we have
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Integrating dI, from y = 0 to y = h, we obtain
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