Al-Ayen University
 College of Petroleum Engineering

Numerical Methods and Reservoir Simulation

Lecturer: Dr. Mohammed Idrees Al-Mossawy
2020/2021
L11: Methods of Solving Systems of Linear Equations (Part 4) (Matrices and Determinants-Part 1)

Outline

\square Scalar Matrix

- Identity Matrix or Unit Matrix
\square Operations on Matrices
> Multiplication of a Matrix by a Scalar
$>$ Addition and Subtraction of Matrices
$>$ Product of Matrices
\square The Transpose of a Matrix
\square The Determinant

Scalar Matrix:

A diagonal matrix in which all the diagonal elements are same, is called a scalar matrix i.e.
Thus

$$
\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ccc}
\mathrm{k} & 0 & 0 \\
0 & \mathrm{k} & 0 \\
0 & 0 & \mathrm{k}
\end{array}\right] \quad \text { are scalar matrices }
$$

Identity Matrix or Unit Matrix :

A scalar matrix in which each diagonal element is 1(unity) is called a unit matrix. An identity matrix of order n is denoted by I_{n}.
Thus $\mathrm{I}_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\mathrm{I}_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ are the identity matrices of order 2 and 3 .

Operations on matrices:

Multiplication of a Matrix by a Scalar:

For example, if $A=\left[\begin{array}{cc}4 & -3 \\ 8 & -2 \\ -1 & 0\end{array}\right]$ then for a scalar $k, \quad k A=\left[\begin{array}{cc}4 k & -3 k \\ 8 k & -2 k \\ -k & 0\end{array}\right]$

Addition and subtraction of Matrices:

$$
\begin{array}{|lll}
\hline & \text { If } & A=\left[\begin{array}{lll}
3 & 1 & 2 \\
2 & 1 & 4
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
1 & 0 & 2 \\
-1 & 3 & 0
\end{array}\right] \\
\text { Then } & C=A+B=\left[\begin{array}{lll}
3+1 & 1+0 & 2+2 \\
2-1 & 1+3 & 4+0
\end{array}\right]=\left[\begin{array}{lll}
4 & 1 & 4 \\
1 & 4 & 4
\end{array}\right] \\
\hline
\end{array}
$$

$$
\begin{array}{|ll}
\text { Thus if } & \mathrm{A}=\left[\begin{array}{cc}
6 & 2 \\
7 & -5
\end{array}\right] \quad, \quad \mathrm{B}=\left[\begin{array}{ll}
8 & 1 \\
3 & 4
\end{array}\right] \\
\text { then } & \mathrm{A}-\mathrm{B}=\left[\begin{array}{cc}
6 & 2 \\
7 & -5
\end{array}\right]-\left[\begin{array}{ll}
8 & 1 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
6-8 & 2-1 \\
7-3 & -5-4
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
4 & -9
\end{array}\right]
\end{array}
$$

Product of Matrices:

Two matrices A and B are said to be conformable for the product $A B$ if the number of columns of A is equal to the number of rows of B. Then the product matrix $A B$ has the same number of rows as A and the same number of columns as B .

$$
\begin{aligned}
& A_{2 \times 2}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad \text { and } \quad B_{2 \times 2}=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} \downarrow & b_{22}
\end{array}\right] \\
& A B=\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right]
\end{aligned}
$$

Example : If $\mathbf{A}=\left[\begin{array}{lll}3 & 1 & 2 \\ 1 & 0 & 1\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ll}1 & -1 \\ 2 & 1 \\ 3 & 1\end{array}\right]$, find $\mathbf{A B}$
Solution: $\mathrm{AB}=\left[\begin{array}{lll}3 & 1 & 2 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{l|l}1 & -1 \\ 2 & 1 \\ 3 & 1\end{array}\right]=\left[\begin{array}{ll}3+2+6 & -3+1+2 \\ 1+0+3 & -1+0+1\end{array}\right]=\left[\begin{array}{cc}11 & 0 \\ 4 & 0\end{array}\right]$

The Transpose of a Matrix:

The transpose of an $m \times n$ matrix \mathbf{A}, written \mathbf{A}^{T}, is the $n \times m$ matrix formed by interchanging the rows and columns of A. For example, if

$$
\begin{aligned}
& \qquad \mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right] \quad \mathbf{A}^{T}=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right] \\
& \text { Example if } \mathrm{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \quad \text { then } \quad \mathrm{A}^{\mathrm{t}}=\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]
\end{aligned}
$$

The Determinant:

The determinant is denoted by $\operatorname{det} \mathrm{A}$ or $|\mathrm{A}|$ for a square matrix A .
The determinant of a matrix is a scalar (number), obtained from the elements of a matrix by specified, operations, which is characteristic of the matrix.

The determinants are defined only for square matrices.
The determinant of the (2×2) matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is given by det $A=|A|=$
Example : If $\mathrm{A}=\left[\begin{array}{cc}3 & 1 \\ -2 & 3\end{array}\right]$ find $|\mathrm{A}|$
Solution: $\quad|\mathrm{A}|=\left|\begin{array}{cc}3 & 1 \\ -2 & 3\end{array}\right|=9-(-2)=9+2=11$

The Determinant:

The Determinant:
The determinant of the (3×3) matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, denoted by
$|A|=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$=a_{11}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|-a_{12}\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+a_{13}\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
$=a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)$
The value of the determinant can be found by expanding it from any row or column.

The Determinant:

Example : If $\mathrm{A}=\left[\begin{array}{ccc}3 & 2 & 1 \\ 0 & 1 & -2 \\ 1 & 3 & 4\end{array}\right]$ find $\operatorname{det} \mathrm{A}$ by expansion about (a) the first row (b) the first column.
Solution (a): $|\mathrm{A}|=\left|\begin{array}{ccc}3 & 2 & 1 \\ 0 & 1 & -2 \\ 1 & 3 & 4\end{array}\right|=3\left|\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right|-2\left|\begin{array}{cc}0 & -2 \\ 1 & 4\end{array}\right|+1\left|\begin{array}{ll}0 & 1 \\ 1 & 3\end{array}\right|=3(4+6)-2(0+2)+1(0-1)=25$
Solution (b) : $|\mathrm{A}|=\left|\begin{array}{ccc}3 & 2 & 1 \\ 0 & 1 & -2 \\ 1 & 3 & 4\end{array}\right|=3\left|\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right|-0\left|\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right|+1\left|\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right|=3(4+6)+1(-4-1)=25$

THANK YOU

