The Material Balance As an Equation of

a Straight Line

Refereeing to the general material balance equation
N

$$
=\frac{N_{p} B_{o}+N_{p}\left(R_{p}-R_{s}\right) B_{g}-\left(W_{e}-W_{p} B_{w}\right)}{\left(B_{o}-B_{o i}\right)+\left(R_{s i}-R_{s}\right) B_{g}+m B_{o i}\left(\frac{B_{g}}{B_{g i}}-1\right)+(1+m) B_{o i} \frac{\left(c_{w} S_{w}+c_{f}\right)}{\left(1-S_{w i}\right)} \Delta p} e q 11
$$

There are essentially three unknown in the above equation:

1. The original oil in place (\mathbf{N})
2. The cumulative water influx (We)
3. The original size of the gas cap as compared to the oil zone size (m)

Havlena and Odeh 1963 expressed the above equation in the following form;

$$
\begin{align*}
N_{p}\left(B_{o}+\right. & \left.\left(R_{p}-R_{s}\right) B_{g}\right)+W_{p} B_{w} \\
& =N\left(B_{o}-B_{o i}\right)+N\left(R_{s i}-R_{s}\right) B_{g} \\
& +m N B_{o i}\left(\frac{B_{g}}{B_{g i}}-1\right) \\
& +(1+m) N B_{o i} \frac{\left(c_{w} S_{w}+c_{f}\right)}{\left(1-S_{w i}\right)} \Delta p+W_{e}
\end{align*}
$$

and they put equation 12 in the following form:

$$
F=N\left[E_{o}+m E_{g}+E_{f, w}\right]
$$

Where:

F represents the underground withdrawals

$$
\begin{equation*}
F=N_{p}\left[B_{o}+\left(R_{p}-R_{s}\right) B_{g}\right]+W_{p} B_{w} \tag{a}
\end{equation*}
$$

and in terms of two phase formation volume factor $\boldsymbol{B}_{\boldsymbol{t}}$,

$$
\begin{aligned}
F & =N_{p}\left[B_{t}+\left(R_{p}-R_{s i}\right) B_{g}\right]+W_{p} B_{w} \\
B_{t} & =B_{o}+\left(R_{s i}-R_{s}\right) B_{g}
\end{aligned}
$$

- $\boldsymbol{E}_{\boldsymbol{o}}$: describes the expansion of oil and its originally dissolved gas

$$
\begin{align*}
& E_{o}=\left(B_{o}-B_{o i}\right)+\left(R_{s i}-R_{s}\right) B_{g} \text { or } \\
& E_{o}=B_{t}-B_{t i} \tag{b}
\end{align*}
$$

- $\boldsymbol{E}_{\boldsymbol{g}}:$ describes the expansion of the gas cap

$$
E_{g}=B_{o i}\left(\frac{B_{g}}{B_{g i}}-1\right)
$$

or

$$
\begin{equation*}
E_{g}=B_{t i}\left(\frac{B_{g}}{B_{g i}}-1\right) \tag{c}
\end{equation*}
$$

- $\boldsymbol{E}_{f, w}$: describes the expansion of the initial water and the reduction in the (pv)

$$
\begin{equation*}
E_{f, w}=(1+m) B_{o i} \frac{\left(c_{w} S_{w}+c_{f}\right)}{\left(1-S_{w i}\right)} \Delta p \tag{d}
\end{equation*}
$$

Equation 13 is a straight line equation, Havlena and Odeh examined several cases with equation 13

This significant observation will provide the engineer with valuable information that can be used in determining the following unknowns:

- Initial oil in place (\mathbf{N})
- Size of the gas cap (m)
- Water influx (We)
- Drive mechanism
- Average reservoir pressure

Six cases will present with the application of the straight line form of the MBE

Case1: Determination of \mathbf{N} in volumetric under saturated reservoirs $\left(R_{s i}=R_{s}, \mathrm{We}=0\right)$

Case 2: Determination of \mathbf{N} in volumetric saturated reservoir $\left(R_{s i} \neq R_{s}\right)$

Case 3: Determination of \mathbf{N} and \mathbf{m} in gas cap drive reservoirs
Case 4: Determination of \mathbf{N}, \mathbf{m} and $\mathbf{W e}$ in water drive reservoirs

Case 5: Determination of \mathbf{N}, m and $\mathbf{W e}$ in combination drive reservoirs

Case 6: Determination of average reservoir pressure \boldsymbol{p}^{-}

Case1: Volumetric Undersaturated Oil Reservoirs

The general linear MBE

$$
F=N\left[E_{o}+m E_{g}+E_{f, w}\right]+W_{e}
$$

Assume $W_{e}=0, \mathrm{~m}=0, R_{s i}=R_{s}=R_{p}$
Applying the above conditions to equation 14

$$
\begin{aligned}
F & =N\left[E_{o}+E_{f, w}\right] \\
F & =N_{p} B_{o}+W_{p} B_{w} \\
E_{o} & =B_{t}-B_{t i} \\
E_{f, w} & =B_{o i} \frac{\left(c_{w} S_{w}+c_{f}\right)}{\left(1-S_{w i}\right)} \Delta p, \Delta p=p_{i}-p_{r}^{-}
\end{aligned}
$$

Then

Plot of $\mathrm{FVs}\left(\boldsymbol{E}_{\boldsymbol{o}}+\boldsymbol{E}_{\boldsymbol{f}, \boldsymbol{w}}\right)$ will yield a straight line with a slope $=\mathrm{N}$ as shown in the figure below

Above the $\mathrm{P}_{\mathrm{b}} \boldsymbol{B}_{\boldsymbol{t}}=\boldsymbol{B}_{\boldsymbol{o}}$

Plot of $\frac{\boldsymbol{F}}{\boldsymbol{E}_{\boldsymbol{o}}+\boldsymbol{E}_{\boldsymbol{f}, \boldsymbol{w}}}$ for each pressure and time observation versus cumulative production $\boldsymbol{N}_{\boldsymbol{p}}$ or time as shown in the figure below.(Campbell plot)

Dake 1994 suggested that such a plot can assume two various shapes;

1. If all the calculated point of $\frac{\boldsymbol{F}}{\boldsymbol{E}_{\boldsymbol{o}}+\boldsymbol{E}_{\boldsymbol{f}, \boldsymbol{w}}}$ lie on a horizontal straight line (line A), then the reservoir is a volumetric reservoir and the ordinate value of plateau determines the initial oil in place \mathbf{N}.
2. If the calculated values of $\frac{\boldsymbol{F}}{\boldsymbol{E}_{\boldsymbol{o}}+\boldsymbol{E}_{\boldsymbol{f}, \boldsymbol{w}}}$ rise, as illustrated by curves (\mathbf{B}) and (\mathbf{C}), it indicated that the reservoir has been energized by water influx, abnormal pore completion or combination of these two. curve \mathbf{C} might be for a strong water drive field in which the aquifer is displacing an infinite acting behaviour, whereas curve \mathbf{B} represents an aquifer whose outer boundary had been felt.
3. If the withdrawal $>$ We then calculated values of $\frac{\boldsymbol{F}}{\boldsymbol{E}_{\boldsymbol{o}}+\boldsymbol{E}_{\boldsymbol{f}, \boldsymbol{w}}}$ will dip downward plus if the withdrawal < We reverse happens and the points are elevated.

Example:

The x-field is a volumetric undersaturated reservoir. volumetric calculation indicates the reservoir contains 270.6 MMSTB of oil initially in place. The initial reservoir pressure is 3685 psia.

The following additional data is available:
$S_{w i}=24 \%, B_{w}=1, c_{w}=3.6 \times 10^{-6} \mathrm{psia}^{-1}, c_{f}=4.95 \times 10^{-6} \mathrm{psia}^{-1}$,
$p_{b}=1500 \mathrm{psia}$
The field production and PVT data are summarized below.

P psi	Well Num.	Bo Bbl/stb	Np, MSTB	Wp, MSTB
3685	1	1.3102	0	0
3680	2	1.3104	20.481	0
3676	2	1.3104	34.75	0
3667	3	1.3105	78.557	0
3664	4	1.3105	101.846	0
3640	19	1.3109	215.681	0
3605	25	1.3116	364.613	0
3567	36	1.3122	542.981	0.159
3515	48	1.3128	841.591	0.805
3448	59	1.313	1273.53	2.579
3360	59	1.315	1691.887	5.008
3275	61	1.316	2127.077	6.5
3188	61	1.317	2575.33	8

Calculate the initial oil in place by using the MBE and compare with the volumetric estimate of N .

Solution:

1. Calculate $\boldsymbol{E}_{\boldsymbol{f}, \boldsymbol{w}}$

$$
E_{f, w}=B_{o i} \frac{\left(c_{w} S_{w}+c_{f}\right)}{\left(1-S_{w i}\right)} \Delta p=10 \times 10^{-6}\left(3685-p_{r}^{-}\right)
$$

2. Calculate :F

$$
\begin{aligned}
& F=N_{p} B_{o}+W_{p} B_{w} \\
& E_{o}=B_{o}-B_{o i}
\end{aligned}
$$

And construct the following table

\mathbf{p}	\mathbf{F},	$\mathbf{M S T B}$	$\mathbf{E}_{\mathbf{o}}$	$\boldsymbol{\Delta} \mathbf{p}$	$\mathbf{E}_{\mathbf{f}, \mathbf{w}}$
3685	0	0	0	0	$\mathbf{E}_{\mathbf{o}}+\mathbf{E}_{\mathbf{f}, \mathbf{w}}$
3680	26.8383	0.0002	5	$5.015652 \mathrm{E}-05$	0.00025
3676	45.5364	0.0002	9	$9.028174 \mathrm{E}-05$	0.00029
3667	102.9489	0.0003	18	$1.805635 \mathrm{E}-04$	0.000481
3664	133.4692	0.0003	21	$2.106574 \mathrm{E}-04$	0.000511
3640	282.7362	0.0007	45	$4.514087 \mathrm{E}-04$	0.001151
3605	478.2264	0.0014	80	$8.025044 \mathrm{E}-04$	0.002203

3567	712.6587	0.002	118	$1.183694 \mathrm{E}-03$	0.003184
3515	1105.646	0.0026	170	$1.705322 \mathrm{E}-03$	0.004305
3448	1674.724	0.0028	237	$2.377419 \mathrm{E}-03$	0.005177
3360	2229.839	0.0048	325	$3.260174 \mathrm{E}-03$	0.00806
3275	2805.733	0.0058	410	$4.112835 \mathrm{E}-03$	0.009913
3188	3399.71	0.0068	497	$4.985559 \mathrm{E}-03$	0.011786

3. Plot \underline{F} against ($\left.\mathbf{E}_{\underline{o}} \pm \underline{E}_{f, w}\right)$ on a Cartesian scale as shown in the figure below
4. Draw the best straight line through the points and determine the slop N

$$
N=257 \text { MMSTB (effective oil or active)This value }
$$ usually smaller than that of the volumetric due to oil being trapped in un drained fault compartments or low permeability regions of the reservoir.

