The Material Balance As an Equation of

a Straight Line

Refereeing to the general material balance equation

Ν

$$= \frac{N_p B_o + N_p (R_p - R_s) B_g - (W_e - W_p B_w)}{(B_o - B_{oi}) + (R_{si} - R_s) B_g + m B_{oi} \left(\frac{B_g}{B_{gi}} - 1\right) + (1 + m) B_{oi} \frac{(c_w S_w + c_f)}{(1 - S_{wi})} \Delta p} \quad eq11$$

There are essentially **three unknown** in the above equation:

- 1. The original oil in place (N)
- 2. The cumulative water influx (We)
- The original size of the gas cap as compared to the oil zone size (m)

Havlena and Odeh 1963 expressed the above equation in the

following form;

$$N_p (B_o + (R_p - R_s)B_g) + W_p B_w$$

= $N(B_o - B_{oi}) + N(R_{si} - R_s) B_g$
+ $mNB_{oi} \left(\frac{B_g}{B_{gi}} - 1\right)$
+ $(1 + m)NB_{oi} \frac{(c_w S_w + c_f)}{(1 - S_{wi})} \Delta p + W_e$ eq12

and they put equation **12** in the following form:

$$F = N[E_o + mE_g + E_{f,w}] \qquad eq13$$

Where:

F represents the underground withdrawals

$$F = N_p \left[B_o + \left(R_p - R_s \right) B_g \right] + W_p B_w \tag{a}$$

and in terms of two phase formation volume factor \boldsymbol{B}_t ,

$$F = N_p \left[B_t + \left(R_p - R_{si} \right) B_g \right] + W_p B_w$$
$$B_t = B_o + \left(R_{si} - R_s \right) B_g$$

E_o : describes the expansion of oil and its originally dissolved gas

$$E_o = (B_o - B_{oi}) + (R_{si} - R_s)B_g \quad \text{or}$$
$$E_o = B_t - B_{ti} \tag{b}$$

•
$$E_g$$
: describes the expansion of the gas cap

$$E_g = B_{oi} \left(\frac{B_g}{B_{gi}} - 1 \right)$$

<u>or</u>

$$E_g = B_{ti} \left(\frac{B_g}{B_{gi}} - 1 \right) \tag{C}$$

*E*_{f,w}: describes the expansion of the initial water and the reduction in the (pv)

$$E_{f,w} = (1+m)B_{oi}\frac{(c_w S_w + c_f)}{(1-S_{wi})}\Delta p$$
 (d)

Equation 13 is a straight line equation, **Havlena** and **Odeh** examined several cases with equation 13

This significant observation will provide the engineer with valuable information that can be used in determining the following unknowns:

- Initial oil in place (N)
- Size of the gas cap (m)
- Water influx (We)
- Drive mechanism
- Average reservoir pressure

<u>Six cases</u> will present with the application of the straight line form of the MBE

<u>Case1</u>: Determination of **N** in volumetric under saturated reservoirs ($R_{si} = R_s$, We = 0)

<u>Case 2</u>: Determination of **N** in volumetric saturated reservoir $(R_{si} \neq R_s)$

<u>Case 3</u>:Determination of **N** and **m** in gas cap drive reservoirs

Case 4: Determination of N , m and We in water drive reservoirs

<u>Case 5</u>: Determination of N , m and We in combination drive reservoirs

<u>Case 6</u>: Determination of average reservoir pressure p^-

Case1: Volumetric Undersaturated Oil Reservoirs

The general linear MBE

$$F = N[E_o + mE_g + E_{f,w}] + W_e \qquad eq14$$

Assume $W_e = 0$, m=0, $R_{si} = R_s = R_p$

Applying the above conditions to equation 14

$$F = N[E_o + E_{f,w}]$$

$$F = N_p B_o + W_p B_w$$

$$E_o = B_t - B_{ti}$$

$$E_{f,w} = B_{oi} \frac{(c_w S_w + c_f)}{(1 - S_{wi})} \Delta p$$
, $\Delta p = p_i - p_r^-$

<u>Then</u>

Plot of FVs $(E_o + E_{f,w})$ will yield a straight line with a slope = N as shown in the figure below

Above the $P_b B_t = B_o$

Dake 1994 suggested that such a plot can assume two various shapes;

1. If all the calculated point of $\frac{F}{E_o + E_{f,w}}$ lie on a horizontal

straight line (line **A**), then the reservoir is a volumetric reservoir and the ordinate value of plateau determines the initial oil in place **N**.

2. If the calculated values of
$$\frac{F}{E_o + E_{f,w}}$$
 rise, as illustrated by

curves (**B**) and (**C**), it indicated that the reservoir has been energized by **water influx**, **abnormal pore completion** or **combination of these two**. curve **C** might be for a strong water drive field in which the aquifer is displacing an infinite acting behaviour , whereas curve **B** represents an aquifer whose outer boundary had been felt.

3. If the withdrawal > **We** then calculated values of $\frac{F}{E_o + E_{f,w}}$ will dip downward plus if the withdrawal < **We** reverse happens

and the points are elevated.

Example:

The x-field is a volumetric undersaturated reservoir. volumetric calculation indicates the reservoir contains 270.6 MMSTB of oil initially in place. The initial reservoir pressure is 3685 psia. The following additional data is available:

 $S_{wi} = 24\%, B_w = 1, c_w = 3.6 \times 10^{-6}$ psia ⁻¹, $c_f = 4.95 \times 10^{-6}$ psia ⁻¹, $p_b = 1500$ psia

The field production and PVT data are summarized below.

Р	Well	Во	Np,	Wp,
psi	Num.	Bbl/stb	MSTB	MSTB
3685	1	1.3102	0	0
3680	2	1.3104	20.481	0
3676	2	1.3104	34.75	0
3667	3	1.3105	78.557	0
3664	4	1.3105	101.846	0
3640	19	1.3109	215.681	0
3605	25	1.3116	364.613	0
3567	36	1.3122	542.981	0.159
3515	48	1.3128	841.591	0.805
3448	59	1.313	1273.53	2.579
3360	59	1.315	1691.887	5.008
3275	61	1.316	2127.077	6.5
3188	61	1.317	2575.33	8

<u>Calculate</u> the initial oil in place by using the **MBE** and compare with the volumetric estimate of N.

Solution:

1. Calculate $E_{f,w}$

$$E_{f,w} = B_{oi} \frac{(c_w S_w + c_f)}{(1 - S_{wi})} \Delta p = 10 \times 10^{-6} (3685 - p_r^{-})$$

2. Calculate :F

$$F = N_p B_o + W_p B_w$$
$$E_o = B_o - B_{oi}$$

And construct the following table

	F,				
р	MSTB	Eo	Δр	E _{f,w}	E _o +E _{f,w}
3685	0	0	0	0	0
3680	26.8383	0.0002	5	5.015652E-05	0.00025
3676	45.5364	0.0002	9	9.028174E-05	0.00029
3667	102.9489	0.0003	18	1.805635E-04	0.000481
3664	133.4692	0.0003	21	2.106574E-04	0.000511
3640	282.7362	0.0007	45	4.514087E-04	0.001151
3605	478.2264	0.0014	80	8.025044E-04	0.002203

3567	712.6587	0.002	118	1.183694E-03	0.003184
3515	1105.646	0.0026	170	1.705322E-03	0.004305
3448	1674.724	0.0028	237	2.377419E-03	0.005177
3360	2229.839	0.0048	325	3.260174E-03	0.00806
3275	2805.733	0.0058	410	4.112835E-03	0.009913
3188	3399.71	0.0068	497	4.985559E-03	0.011786

3. Plot <u>**F** against $(E_0 + E_{f,w})$ </u> on a Cartesian scale as shown in the figure below

4. Draw the best straight line through the points and determine the slop N

N = 257 MMSTB (<u>effective oil or active</u>)This value usually smaller than that of the volumetric due to oil being trapped in un drained fault compartments or low permeability regions of the reservoir.

