©
©

(8)
 Tutorial

Dr. Raed H. Allawi

(

Ex.17: Using the Bingham plastic and power-law models, determine the various pressure drops, nozzle velocity and nozzle sizes for a section of $\mathbf{1 2 . 2 5}$ in ($\mathbf{3 1 1 m m}$) hole. Two pumps are used to provide $\mathbf{7 0 0}$ gpm ($2650 \mathrm{l} / \mathrm{min}$). The Data:

- Plastic viscosity $=\mathbf{1 2} \mathrm{cp}, \quad$ Yield point $=\mathbf{1 2} \mathrm{lb} / 100 \mathrm{ft}^{2} \quad$ Mud weight $=\mathbf{8 . 8} \mathrm{lb} / \mathrm{gal}$
- Drillpipe ($\mathrm{ID}=\mathbf{4 . 2 7 6} \mathrm{in}, \mathrm{OD}=\mathbf{5} \mathrm{in}$, length $=\mathbf{6 4 8 0} \mathrm{ft})$
- Drill collars $(\mathrm{ID}=\mathbf{2 . 8 7 5} \mathrm{in}, \mathrm{OD}=\mathbf{8}$ in, length $=\mathbf{6 2 0} \mathrm{ft}(\mathbf{1 8 9} \mathrm{m}))$
- Last casing was $\mathbf{1 3 . 3 7 5}$ in with an ID of $\mathbf{1 2 . 5 6 5} \mathbf{i n . ~} \mathbf{1 3 . 3 7 5}$ in casing was set at $\mathbf{2 5 5 0} \mathrm{ft}$.
- The two pumps are to be operated at a maximum standpipe pressure of $\mathbf{2 2 0 0} \mathrm{psi}$.
- Assume a surface equipment type of 4 .

Power law model:

Surface losses

- $\Delta \mathrm{P}_{\mathrm{s}}$ or $\mathrm{P}_{1}=\mathrm{Ex} \rho^{0.8} \times \mathrm{Q}^{1.8} \times \mathrm{PV}^{0.2}$
- $\Delta \mathrm{P}_{\mathrm{s}}$ or $\mathrm{P}_{1}=4.2 \times 10^{-5} \times 8.8^{0.8} \times 700^{1.8} \times 12^{0.2}=\mathbf{5 2} \mathbf{~ p s i}$
- $\theta_{600}=2 \times \mathrm{PV}+\mathrm{YP}=2 \times 12+12=36$
- $\theta_{300}=\mathrm{PV}+\mathrm{YP}=12+12=24$
- $\mathrm{n}=3.32 \log \frac{\theta_{600}}{\theta_{300}}$
- $\mathrm{n}=3.32 \log \frac{36}{24}=0.584$
- $\mathrm{k}=\frac{\theta_{300}}{511^{\mathrm{n}}}$
- $\mathrm{k}=\frac{24}{511^{0.585}}=0.628$

Pipe losses

Pressure losses inside drill pipe $V ́=\frac{24.5 \times \mathrm{Q}}{\mathrm{D}^{2}}=\frac{24.5 \times 700}{(4.276)^{2}}=937.97 \mathrm{ft} / \mathrm{min}$

- $\mathrm{V}_{\mathrm{c}}=\left(\frac{5.82 \times 10^{4} \times \mathrm{K}}{\rho}\right)^{\left(\frac{1}{2-\mathrm{n}}\right)}\left(\frac{1.6 \times(3 \mathrm{n}+1)}{\mathrm{D} \times 4 \mathrm{n}}\right)^{\left(\frac{\mathrm{n}}{2-\mathrm{n}}\right)}=\left(\frac{5.82 \times 10^{4} \times 0.628}{8.8}\right)^{\left(\frac{1}{2-0.584}\right)}\left(\frac{1.6 \times(3 \times 0.584+1)}{4.276 \times 4 \times 0.584}\right)^{\left(\frac{0.584}{2-0.554}\right)}$
$=256 \mathrm{ft} / \mathrm{min}$
- Since V $>\mathrm{V}_{\mathrm{c}}$, flow is turbulent and pressure drop inside drill pipe is calculated from:
- $\mathrm{P}=\frac{8.91 \times 10^{-5} \times \rho^{0.8} \times \mathrm{Q}^{1.8} \times \mathrm{PV}^{0.2} \times \mathrm{L}}{(\mathrm{D})^{4.8}}=\frac{8.91 \times 10^{-5} \times 8.8^{0.8} \times 700^{1.8} \times 12^{0.2} \times 6480}{(4.276)^{4.8}}=\mathbf{6 6 8 . 4 5} \mathbf{~ p s i}$

Pressure losses inside drill collars

- $\hat{V}=\frac{24.5 \times \mathrm{Q}}{\mathrm{D}^{2}}=\frac{24.5 \times 700}{(2.875)^{2}}=2074.85 \mathrm{ft} / \mathrm{min}$
- $\mathrm{V}_{\mathrm{c}}=\left(\frac{5.82 \times 10^{4} \times \mathrm{K}}{\rho}\right)^{\left(\frac{1}{2-n}\right)}\left(\frac{1.6 \times(3 \mathrm{n}+1)}{\mathrm{D} \times 4 \mathrm{n}}\right)^{\left(\frac{\mathrm{n}}{2-\mathrm{n}}\right)}=\left(\frac{5.82 \times 10^{4} \times 0.628}{8.8}\right)^{\left(\frac{1}{2-0.584}\right)}\left(\frac{1.6 \times(3 \times 0.584+1)}{2.875 \times 4 \times 0.584}\right)^{\left(\frac{0.584}{2-0.584}\right)}$
$=301.8 \mathrm{ft} / \mathrm{min}$
- Since V $>V_{c}$, flow is turbulent and pressure loss inside drill collars P_{3} is determined from:
- $\mathrm{P}_{3}=\frac{8.91 \times 10^{-5} \times \rho^{0.8} \times \mathrm{Q}^{1.8} \times \mathrm{PV}^{0.2} \times \mathrm{L}}{(\mathrm{D})^{4.8}}=\frac{8.91 \times 10^{-5} \times 8.8^{0.8} \times 700^{1.8} \times 12^{0.2} \times 620}{(2.875)^{4.8}}=429.93 \mathbf{~ p s i}$

Annular pressure losses /Pressure losses around drill collars

- $\mathrm{V}^{\prime}=\frac{24.5 \times \mathrm{Q}}{\mathrm{D}_{\mathrm{oh}}^{2}-\mathrm{OD}_{\mathrm{dc}}^{2}}=\frac{24.5 \times 700}{12.25^{2}-8^{2}}=199.27 \mathrm{ft} / \mathrm{min}$
- $\mathrm{V}_{\mathrm{c}}=\left(\frac{3.878 \times 10^{4} \times \mathrm{K}}{\rho}\right)^{\left(\frac{1}{2-\mathrm{n}}\right)}\left(\frac{2.4 \times(2 \mathrm{n}+1)}{\left(\mathrm{D}_{\mathrm{oh}}-\mathrm{OD} \mathrm{dc}\right) \times 3 \mathrm{n}}\right)^{\left(\frac{\mathrm{n}}{2-\mathrm{n}}\right)}=\left(\frac{3.878 \times 10^{4} \times 0.628}{8.8}\right)^{\left(\frac{1}{2-0.584}\right)}\left(\frac{2.4 \times(2 \times 0.584+1)}{(12.25-8) \times 3 \times 0.584}\right)^{\left(\frac{0.584}{2-0.584}\right)}$
$=232.6 \mathrm{ft} / \mathrm{min}$
- Since $\mathrm{V}_{\mathrm{c}}>\mathrm{V}$, flow is laminar and pressure loss around drill collars is calculated from:
- $\mathrm{P}_{4}=\left(\frac{\mathrm{KL}}{300 \mathrm{D}_{\mathrm{e}}}\right)\left(\frac{2.4 \text { V́ } \times(3 \mathrm{n}+1)}{\mathrm{D}_{\mathrm{e}} \times 3 \mathrm{n}}\right)^{\mathrm{n}}=\left(\frac{0.628 \times 620}{300(12.25-8)}\right)\left(\frac{2.4 \times 199 \times(3 \times 0.584+1)}{(12.25-8) \times 3 \times 0.584}\right)^{0.584}=6.3 \mathbf{~ p s i}$

Open hole section- Around Drillpipe

- $\mathcal{V}^{\prime}=\frac{24.5 \times \mathrm{Q}}{\mathrm{D}_{\mathrm{oh}}^{2}-\mathrm{OD}_{\mathrm{dp}}^{2}}=\frac{24.5 \times 700}{12.25^{2}-5^{2}}=137.13 \mathrm{ft} / \mathrm{min}$
- $\mathrm{V}_{\mathrm{c}}=\left(\frac{3.878 \times 10^{4} \times \mathrm{K}}{\rho}\right)^{\left(\frac{1}{2-n}\right)}\left(\frac{2.4 \times(2 \mathrm{n}+1)}{\left(\mathrm{D}_{\mathrm{oh}}-\mathrm{OD} \mathrm{dp}\right) \times 3 \mathrm{n}}\right)^{\left(\frac{\mathrm{n}}{2-\mathrm{n}}\right)}=\left(\frac{3.878 \times 10^{4} \times 0.628}{8.8}\right)^{\left(\frac{1}{2-0.584}\right)}\left(\frac{2.4 \times(2 \times 0.584+1)}{(12.25-5) \times 3 \times 0.584}\right)^{\left(\frac{0.584}{2-0.584}\right)}=229.6 \mathrm{f} / \mathrm{min}$
- Since $\mathrm{V}_{\mathrm{c}}>\hat{V}$, flow is laminar and the pressure loss around the drillpipe in the open-hole section is determined from:
- $\mathrm{P}_{5}=\left(\frac{\mathrm{KL}}{300 \mathrm{D}_{\mathrm{e}}}\right)\left(\frac{2.4 \mathrm{~V} \times(3 \mathrm{n}+1)}{\mathrm{D}_{\mathrm{e}} \times 3 \mathrm{n}}\right)^{\mathrm{n}}=\left(\frac{0.628 \times 3930}{300(12.25-5)}\right)\left(\frac{2.4 \times 137 \times(3 \times 0.584+1)}{(12.25-5) \times 3 \times 0.584}\right)^{0.584}=\mathbf{1 3 . 7 6} \mathbf{~ p s i}$
- (Where $\mathrm{L}=6480-2550=3930 \mathrm{ft}$, and $\mathrm{L}=$ length of drillpipe in the open-hole section).

Pressure losses around drillpipe: Cased hole section

- $\quad \mathrm{V}^{\prime}=\frac{24.5 \times \mathrm{Q}}{\mathrm{D}_{\mathrm{c}}^{2}-0 \mathrm{D}_{\mathrm{dp}}^{2}}=\frac{24.5 \times 700}{12.565^{2}-5^{2}}=129 \mathrm{ft} / \mathrm{min}$
- $\mathrm{V}_{\mathrm{c}}=\left(\frac{3.878 \times 10^{4} \times \mathrm{K}}{\rho}\right)^{\left(\frac{1}{2-\mathrm{n}}\right)}\left(\frac{2.4 \times(2 \mathrm{n}+1)}{\mathrm{D}_{\mathrm{e}} \times 3 \mathrm{n}}\right)^{\left(\frac{\mathrm{n}}{2-\mathrm{n}}\right)}=\left(\frac{3.878 \times 10^{4} \times \mathrm{K}}{\rho}\right)^{\left(\frac{1}{2-\mathrm{n}}\right)}\left(\frac{2.4 \times(2 \mathrm{n}+1)}{\left(\mathrm{D}_{\mathrm{c}}-\mathrm{OD} \mathrm{dp}\right) \times 3 \mathrm{n}}\right)^{\left(\frac{\mathrm{n}}{2-\mathrm{n}}\right)}$
- $\mathrm{V}_{\mathrm{c}}=\left(\frac{3.878 \times 10^{4} \times 0.628}{8.8}\right)^{\left(\frac{1}{2-0.584}\right)}\left(\frac{2.4 \times(2 \times 0.584+1)}{(12.565-5) \times 3 \times 0.584}\right)^{\left(\frac{0.584}{2-0.584}\right)}=183.38 \mathrm{ft} / \mathrm{min}$
- Since $\mathrm{V}_{\mathrm{c}}>\mathrm{V}$, flow is laminar and the pressure loss around the drillpipe in the cased hole is determined from:
- $\mathrm{P}_{6}=\left(\frac{\mathrm{KL}}{300 \mathrm{D}_{\mathrm{e}}}\right)\left(\frac{2.4 \mathrm{~V} \times(3 \mathrm{n}+1)}{\mathrm{D}_{\mathrm{e}} \times 3 \mathrm{n}}\right)^{\mathrm{n}}=\left(\frac{0.628 \times 2550}{300(12.565-5)}\right)\left(\frac{2.4 \times 129 \times(3 \times 0.584+1)}{(12.565-5) \times 3 \times 0.584}\right)^{0.584}=\mathbf{8} \mathbf{~ p s i}$

Pressure drops across bit

- Total pressure loss in circulating system, except bit.
- $\mathrm{P}_{\text {Total }}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}+\mathrm{P}_{4}+\mathrm{P}_{5}+\mathrm{P}_{6}$
- $=52+668.45+429.93+8+13.76+6.3=1178.44 \mathrm{psi}$
- Therefore, pressure drop available for bit $\left(\mathrm{P}_{\mathrm{bit}}\right)$
- $\mathrm{P}_{\text {bit }}=2200-1164.85=\mathbf{1 0 2 1 . 5 6} \mathbf{~ p s i}$

Determine nozzle velocity (ft/s)

- $\mathrm{V}_{\mathrm{n}}=33.36 \sqrt{\frac{\mathrm{P}_{\mathrm{bit}}}{\rho}}$
- $\mathrm{V}_{\mathrm{n}}=33.36 \sqrt{\frac{1021.56}{8.8}}=359.43 \mathrm{ft} / \mathrm{s}$

Determine total area of nozzles ($\mathbf{i n}^{\mathbf{2}}$)

- $A_{n}=\frac{0.32 * Q}{V_{n}}$
- $\mathrm{A}_{\mathrm{n}}=\frac{0.32 * 700}{359.43}=0.623 \mathrm{in}^{2}$
- Nozzle size (in multiples of $(1 / 32)$
- $\mathrm{d}_{\mathrm{n}}=32 \sqrt{\frac{4 * A_{\mathrm{n}}}{3 * \pi}}$
- $\mathrm{d}_{\mathrm{n}}=32 \sqrt{\frac{4 * 0.623}{3 * \pi}}=16.46$
- Hence, select 1 nozzles of size 17 and 2 of size 16 .

B.H.C.P.

- B.H.C.P. $=0.052 \rho \mathrm{D}+\Delta \mathrm{P}_{\mathrm{ap}}+\Delta \mathrm{P}_{\mathrm{ac}}$
- $=0.052 * 8.8 * 7100+21.76+6.3=\mathbf{3 2 7 7} \mathbf{~ p s i}$
- E. C. D. $=I M W+\frac{\Delta_{\mathrm{ap}}+\Delta_{\mathrm{ac}}}{0.052 \times \mathrm{D}}$
- E. C. D. $=8.8+\frac{21.76+6.3}{0.052 \times 7100}=\mathbf{8 . 8 7 6 ~ \mathbf { ~ I b } / \mathbf { g a l }}$

