Mechanics

Dr. Mohaimen AI-Thamir

Title: Moment of a force
Lec. Number: 6

Rectangular components of a force

In many problems it will be found desirable to resolve a force into two components which are perpendicular to each other. In figure below, the force F has been resolved into a component F_{x} along the x axis and a component F_{y} along the y axis. The parallelogram drawn to obtain the two components is a rectangle, and F_{x} and F_{y} are called rectangular components.

Normal coordinates

Inclines coordinates

Moment of a force about a point: Two dimensions

Many applications deal with two-dimensional structures, i.e., structures which have length and breadth but only negligible depth and which are subjected to forces contained in the plane of the structure. Two-dimensional structures and the forces acting on them can be readily represented on a sheet of paper or on a blackboard. Their analysis is therefore considerably simpler than that of three-dimensional structures and forces.

The magnitude of M_{O} measures the tendency of the force F to make the rigid body rotate about a fixed axis at point O normal to the plane containing F and d directed according to the right hand-rule.

$\mathrm{d}=$ vertical distance between point O and the line of action of force F

The moment of F about O is perpendicular to the plane of the figure and that it is completely defined by the scalar.

As noted earlier, a positive value for M_{O} indicates that the vector M_{O} points out of the paper (the force F tends to rotate the body counter clockwise about O), and a negative value indicates that the vector M_{O} points into the paper (the force F tends to rotate the body clockwise about O).

$$
M_{O}=M_{z}=x F_{y}-y F_{x}
$$

Example 1

A 100-lb vertical force is applied to the end of a lever which is attached to a shaft at O. Determine (a) the moment of the $100-\mathrm{lb}$ force about $O ;(b)$ the horizontal force applied at A which creates the same moment about $O ;(c)$ the smallest force applied at A which creates the same moment about O; (d) how far from the shaft a 240 -lb vertical force must act to create the same moment about O; (e) whether any one of the forces obtained in parts b, c, and d is equivalent to the original force.

Solution

(a)

a. Moment about O. The perpendicular distance from O to the line of action of the $100-\mathrm{lb}$ force is

$$
d=(24 \mathrm{in} .) \cos 60^{\circ}=12 \mathrm{in} .
$$

The magnitude of the moment about O of the $100-\mathrm{lb}$ force is

$$
M_{O}=F d=(100 \mathrm{lb})(12 \mathrm{in} .)=1200 \mathrm{lb} \cdot \mathrm{in} .
$$

Since the force tends to rotate the lever clockwise about O, the moment will be represented by a vector \mathbf{M}_{O} perpendicular to the plane of the figure and pointing into the paper. We express this fact by writing

$$
\mathbf{M}_{O}=1200 \mathrm{lb} \cdot \mathrm{in} . \downarrow
$$

(b)

b. Horizontal Force. In this case, we have

$$
d=(24 \mathrm{in} .) \sin 60^{\circ}=20.8 \mathrm{in} .
$$

Since the moment about O must be $1200 \mathrm{lb} \cdot \mathrm{in}$., we write

$$
\begin{aligned}
M_{O} & =F d \\
1200 \mathrm{lb} \cdot \mathrm{in.} & =F(20.8 \mathrm{in.}) \\
F & =57.7 \mathrm{lb} \quad \mathrm{~F}=57.7 \mathrm{lb} \rightarrow
\end{aligned}
$$

(c)

(d)

c. Smallest Force. Since $M_{O}=F d$, the smallest value of F occurs when d is maximum. We choose the force perpendicular to $O A$ and note that $d=24 \mathrm{in}$.; thus

$$
\begin{aligned}
M_{O} & =F d \\
1200 \mathrm{lb} \cdot \mathrm{in.} & =F(24 \mathrm{in} .) \\
F & =50 \mathrm{lb} \quad \mathbf{F}=50 \mathrm{lb} \quad 30^{\circ}
\end{aligned}
$$

d. $240-\mathrm{lb}$ Vertical Force. In this case $M_{O}=F d$ yields

$$
\begin{array}{rlrl}
1200 \mathrm{lb} \cdot \mathrm{in} . & =(240 \mathrm{lb}) d & d=5 \mathrm{in} . \\
O B \cos 60^{\circ} & =d & O B=10 \mathrm{in} .
\end{array}
$$

e. None of the forces considered in parts b, c, and d is equivalent to the original $100-\mathrm{lb}$ force. Although they have the same moment about O, they have different x and y components. In other words, although each force tends to rotate the shaft in the same manner, each causes the lever to pull on the shaft in a different way.

Example 2

A force of 800 N acts on a bracket as shown. Determine the moment of the force about B.

Solution

The moment \mathbf{M}_{B} of the force \mathbf{F} about B is obtained by forming the vector product

$$
\mathbf{M}_{B}=\mathbf{r}_{A / B} \times \mathbf{F}
$$

where $\mathbf{r}_{A / B}$ is the vector drawn from B to A. Resolving $\mathbf{r}_{A / B}$ and \mathbf{F} into rectangular components, we have

$$
\begin{aligned}
\mathbf{r}_{A / B} & =-(0.2 \mathrm{~m}) \mathbf{i}+(0.16 \mathrm{~m}) \mathbf{j} \\
\mathbf{F} & =(800 \mathrm{~N}) \cos 60^{\circ} \mathbf{i}+(800 \mathrm{~N}) \sin 60^{\circ} \mathbf{j} \\
& =(400 \mathrm{~N}) \mathbf{i}+(693 \mathrm{~N}) \mathbf{j}
\end{aligned}
$$

Recalling the relations (3.7) for the cross products of unit vectors (Sec. 3.5), we obtain

$$
\begin{aligned}
\mathbf{M}_{B} & =\mathbf{r}_{A / B} \times \mathbf{F}=[-(0.2 \mathrm{~m}) \mathbf{i}+(0.16 \mathrm{~m}) \mathbf{j}] \times[(400 \mathrm{~N}) \mathbf{i}+(693 \mathrm{~N}) \mathbf{j}] \\
& =-(138.6 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{k}-(64.0 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{k} \\
& =-(202.6 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{k} \quad \mathbf{M}_{B}=203 \mathrm{~N} \cdot \mathrm{~m} \downarrow
\end{aligned}
$$

The moment \mathbf{M}_{B} is a vector perpendicular to the plane of the figure and pointing into the paper.

Cross product

$$
\begin{aligned}
& i \times i=0 \\
& j \times j=0 \\
& k \times k=0
\end{aligned}
$$

$$
\begin{array}{ll}
i \times j=\mathrm{k} & \mathrm{j} \times i=-\mathrm{k} \\
\mathrm{j} \times k=\mathrm{i} & \mathrm{k} \times j=-\mathrm{i} \\
\mathrm{k} \times i=\mathrm{j} & \mathrm{i} \times k=-\mathrm{j}
\end{array}
$$

