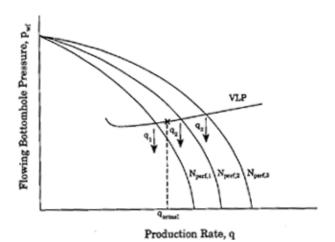
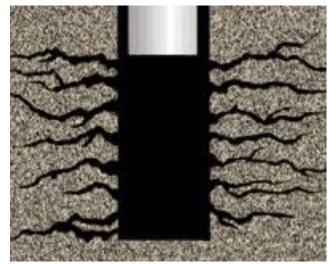
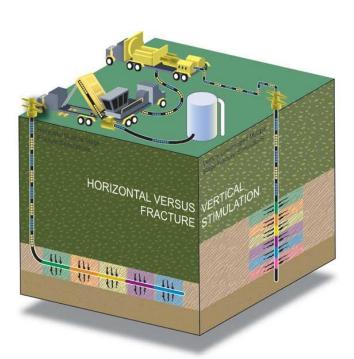
## Petroleum Production Engineering III

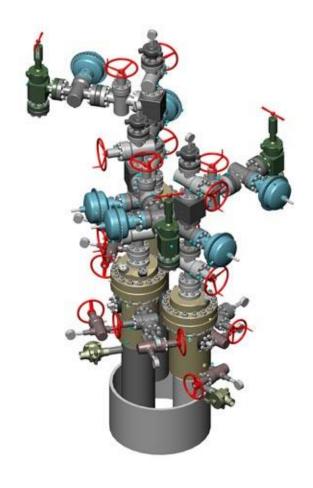
Lecture 1

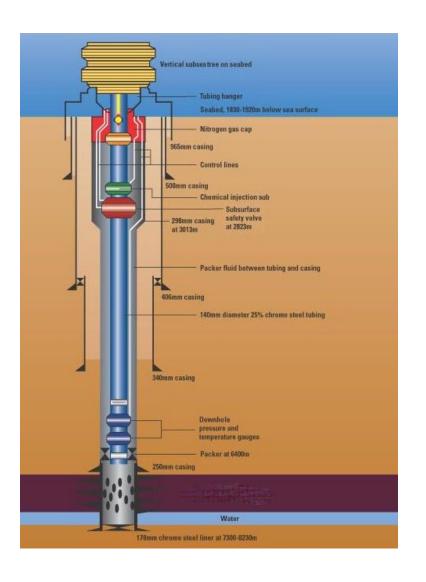

#### What does a Production Engineer Do?


The role of a production engineer is to take over once a well is drilled and completed, monitor daily production, and determine if the well is producing optimally. The production engineer monitors daily oil/gas/water production, well injection, maintains well production decline curves, analyzes well test data, prepares acidizing programs and hydraulic fracturing designs, and prepares well workover programs.


 A production engineer is challenged to perform all of the tasks in a cost-effective manner. There is no point in increasing production, if it isn't cost effective to do so. As a production engineer, you will be challenged to maximize production, while minimizing costs.



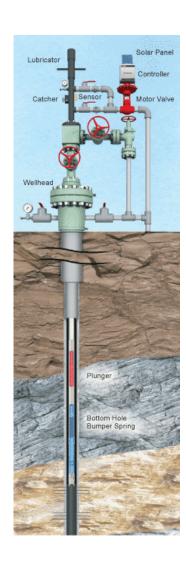

#### Well Performance and Production Systems








### Well Completion Design






#### PE 323 Artificial Lift







#### Production System – Inflow, Outflow

- Petroleum Production involves 2 distinct but intimately connected general systems:

Outflow: the reservoir, which is frequently a porous medium with unique storage and flow characteristics. Aspects of the sandface are included in the outflow system.

Inflow: the tubular conduit including all equipment on the tubing string, bottomhole and wellhead assemblies, the surface gathering, separation and, storage facilities.

# Important Aspects of the Petroleum Production System

1. Volume and Phase of reservoir hydrocarbons.

(Reservoir type and characteristic, Reservoir Porosity, Reservoir thickness, Fluid saturation)

- 2.Fluid flow in reservoir
- 3. The characteristics of the near wellbore region, the sand face and the well completion.
- 4. The well and surface equipment.

#### Well Productivity

- All of the component of the petroleum systems can be condensed into the productivity index (J or PI).
- The term productivity index is the ratio of the production rate (q) to the pressure drawdown at the midpoint of the producing interval.

$$J = \frac{q}{\overline{p}_r - p_{wf}}$$

#### Productivity Index (J)

• The productivity index is derived from Darcy's Law by:

$$J = \frac{q}{\overline{p}_r - p_{wf}} = \frac{kh}{\alpha_r B \mu (p_D + s)}$$
 Eq(1-6)

• Where q = flow rate, STB/DJ = productivity index, STB/D/psi

 $p_r$  = volumetric average drainage area pressure

 $p_{wf}$  = bottom hole flowing pressure

So what can a production engineer actually control?

• So, from equation we see the <u>only parameters that</u> <u>a production engineer can control are pressure</u> <u>drawdown (p-p<sub>wf</sub>) and skin factor(s).</u>

• This is the world of the production engineer.