
Asst. Lecturer Ahmed Razzaq  Fourth Stage 

1 

 

Lecture Four 

 

4.1 Natural Gas Production 

     In traveling from its original location in the reservoir to the final point of 

consumption, the gas must first travel through the reservoir rock or porous 

medium. A certain amount of energy is required to overcome the resistance to 

flow through the rock, which is manifested in a pressure decrease in the 

direction of flow, toward the well. This pressure drop or decrease depends on 

the gas flow rate, properties of the reservoir fluids, and properties of the rock. 

The fluid properties were discussed in Lecture 3, and a brief discussion of the 

rock properties is given in this lecture.  

     The engineer involved in gas production operations must be able to predict 

not only the rate at which a well or field will produce, but also how much gas is 

originally in the reservoir and how much of it can be recovered economically. 

This requires the ability to relate volumes of gas existing in the reservoir to 

reservoir pressure. Because the flow capacity of a well depends on the reservoir 

pressure, both reservoir gas flow and reserve estimates are discussed in this 

lecture. 

Figure 4.1: Gas Production schematic 
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4.1.1 Flow of Natural Gas in Porous Media 

     Determination of the inflow performance or reservoir flow capacity for a gas 

well requires a relationship between flow rate coming into a well and the sand-

face pressure or flowing bottom-hole pressure. This relationship may be 

established by the proper solution of Darcy's Law, which is the accepted 

expression relating pressure drop and fluid velocity in a porous medium, 

provided that the flow is laminar. Solution of Darcy's Law depends on the 

conditions of flow existing in the reservoir or the flow regime. The flow type or 

regime may be independent of time or steady-state, or if conditions at a 

particular location change with time, the flow regime is transient or unsteady- 

state. Under certain conditions of transient flow, conditions change at a constant 

rate at all locations in the reservoir. This condition is called pseudo-steady-state 

and may be analyzed more simply than the transient condition.  

     The flow regimes will be discussed qualitatively first, the equations for each 

regime will be presented, and then the application of the equations for 

determining inflow performance or well flow capacity will be presented.  

4.1.1.1 Flow Regime Characteristics  

     When a well is opened to production from a shut-in condition, the pressure 

disturbance created at the well travels outward through the rock at a velocity 

governed by the rock and fluid properties. The various flow regimes are 

discussed with respect to the behavior of this pressure disturbance.  

 Steady-State Flow 

     Figure 4-2 illustrates the pressure and flow rate distribution occurring during 

radial, steady-state flow into a well. This pressure distribution will remain 

constant as long as the radius being drained by the well remains constant. 

     For such a situation to be strictly true it is necessary that the flow across the 

external drainage radius re be equal to the flow across the well radius at rw. This 

is never strictly met in a reservoir other than a strong water drive, whereby the 

water influx rate equals the producing rate. Pressure maintenance by water 

injection down-dip or by gas injection up dip would also approximate steady-

state conditions as would most pattern water-floods after the initial stages of 

injection have passed. 
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Figure 4-2: Radial steady-state flow. 

     Steady-state equations are also useful in analyzing the conditions near the 

wellbore because even in an unsteady-state system the flow rate near the 

wellbore is al most constant so that the conditions around the wellbore are 

almost constant. Thus, steady-state flow equations can be applied to this portion 

of the reservoir without any significant error. 

 Unsteady-State Flow 

     Figure 4.3 shows the pressure and rate distributions for a radial system at 

various times for a closed reservoir (no flow across re). In this case all of the 

production is due to the expansion of the fluid in the reservoir. This causes the 

rate at re to be zero and the rate increases to a maximum at the well radius rw. In 

the steady-state case the flow across the outer boundary, re was equal to the flow 

across rw the well radius. With flow across re zero, the only energy causing the 

flow of fluid is the expansion of the fluids themselves. Initially the pressure is 

uniform throughout the reservoir at Pi. This represents the zero producing time. 

     The production rate is controlled so that the pressure at the well is constant. 

A pressure distribution shown as p at t1 is obtained after a short period of time of 

producing the well at such a rate that the well pressure remains constant. At this 
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time only a small portion of the reservoir has been affected or has had a 

significant pressure drop. 

     For a closed reservoir, flow occurs due to expansion of the fluid. 

Consequently, if no pressure drop exists in the reservoir at a particular point, or 

outside of that point, no flow could be taking place at that particular radius, the 

fluid could not expand without a drop in pressure. 

     Thus, as shown in the plot of q at t1, the rate at re, is zero and increases with a 

reduction in radius until the maximum rate in the reservoir is obtained at rw. The 

pressure and rate distributions at time t1 represent an instant in time, and the 

pressure and rate distributions move on through these positions immediately as 

the production continues to affect more and more of the reservoir. That is, more 

and more of the reservoir continues to experience a significant pressure drop and 

is subjected to flow until the entire reservoir is affected as shown by the pressure 

at t2. The rate, q, at t1 indicates that the flow rate at this time extends throughout 

the reservoir since all of the reservoir has been affected and has had a significant 

pressure drop.  

     Notice that the rate at the well has declined somewhat from time t1 to t2 since 

the same pressure drop (Pi - Pw), is effective over a much larger volume of the 

reservoir. Once the pressure in the entire reservoir has been affected the pressure 

will drop throughout the reservoir as production continues so that the pressure 

distribution might be as shown for p at t3. The rate will have declined somewhat 

during time t1, to t2 due to the increase in the radius over which flow is taking 

place, and it will continue to decline from t2 to t3 due to the decline of the total 

pressure drop from re to rw, (Pe -  Pw). 

     Note that from time t = 0 to time t2, when a pressure drop is finally affected 

throughout the entire reservoir, the pressure and rate distributions would not be 

affected by the size of the reservoir or the position of the external drainage 

radius re. During this time the reservoir is said to be infinite-acting because 

during this period the outer drainage radius, re, could mathematically be infinite. 

Even in reservoir systems that are dominated by steady-state flow, the effect of 

changes in well rates or well pressures at the well will be governed by unsteady-

state flow equations until the changes have been in effect for a sufficient length 

of time to affect the entire reservoir and have the reservoir again reach a steady-

state condition.  
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Fig. 4.3: Unsteady-state radial flow with constant well pressure. 

 

 Pseudo-Steady-State Flow  

     Figure 4.4 illustrates the pressure and rate distribution for the same unsteady-

state system except that in this case the rate at the well, qw, is held constant. This 

might be comparable to a prorated well or one that is pumping at a constant rate. 

Again at time = 0 the pressure throughout the reservoir is uniform at Pi. Then 

after some short producing time t1 at a constant rate, only a small portion of the 

reservoir will have experienced a significant pressure drop, and consequently the 

reservoir will be flowing only out to a radius r1. As production continues at the 

constant rate, the entire reservoir will eventually experience a significant 

pressure drop as shown at t2. Shortly after the entire reservoir pressure has been 

affected, the change in the pressure with time at all radius in the reservoir 

becomes uniform so that the pressure distributions at subsequent times are 

parallel as illustrated by the pressure distributions at times t3,t4 , and t5. This 

situation will continue with constant changes in pressure with time at all 

radiuses and with subsequent parallel pressure distributions until the reservoir is 

no longer able to sustain a constant flow rate at the wellbore. This will occur 

when the pressure at the well, pw, has reached its physical lower limit.  
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     Pseudo-steady-state flow occurs in the reservoir after it has been produced at 

a constant rate for a long enough period of time to cause a constant change in 

pressure at all radius, resulting in parallel pressure distributions and 

corresponding constant rate distributions. Pseudo-steady- state flow is a 

specialized case of unsteady-state flow, and is sometimes referred to as 

stabilized flow. Most of the life of a reservoir will exist in pseudo-steady-state 

flow.  

 

Figure 4-4: Unsteady-state radial flow with constant producing rate pseudo-steady-state 

t2 to t5. 

 

4.1.1.2 Flow Equations 

     From the previous description of the various flow regimes it is obvious that a 

particular well will be acting in each of these regimes at some time in the life of 

the well. The applicable equations for each flow regime will be derived or 

represent this section.  
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Steady-State Flow  

Darcy's Law for flow in a porous medium is 

  

 

 

……………… (4.1) 

 

Where: 

 v = fluid velocity,  

q = volumetric flow rate, 

k = effective permeability,  

µ = fluid viscosity, and  

dp/dx = pressure gradient in the direction of flow.  

     For radial flow in which the distance is defined as positive moving away 

from the well, the equation becomes 

 

  ………………… (4.2) 

 

Where: 

r = radial distance, and  

h = reservoir thickness.  

     Darcy's Law describes the pressure loss due to viscous shear occurring in the 

flowing fluid. If the formation is not horizontal, the hydrostatic or potential 

energy term must be included. This is usually negligible for gas flow in 

reservoirs. Equation 4-2 is a differential equation and must be integrated for 

application. Before integration the flow equation must be combined with an 

equation of state and the continuity equation. The continuity equation is  
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 ……………… (4.3) 

From lecture 3, the equation of state for a real gas is 

……………. (4.4) 

 

     The flow rate for a gas is usually desired at some standard conditions of 

pressure and temperature, Psc and Tsc. Using these conditions in Equation 4-3 

and combining Equations 4-3 and 4-4:  

 

Solving for qsc and expressing q with Equation 4-2 gives  

 

The variables in this equation are p and r. Separating the variables and 

integrating: 

 

 

 

 

………. (4.5) 

     In this derivation it was assumed that µ and Z were independent of pressure. 

They may be evaluated at reservoir temperature and average pressure in the 

drainage area 
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Equation 4-5 is applicable for any consistent set of units. In so-called 

conventional oil field units the equation becomes 

…………….. (4.6) 

 

Where: 

q sc = Mscf/day,  

k = permeability in millidarcies,  

h = formation thickness in feet,  

Pe = pressure at re, psia,  

Pw = wellbore pressure at rw, psia, and  

µ = gas viscosity, cp.  

This equation incorporates the following values for standard pressure and 

temperature: 

Psc = 14.7 psia 

Tsc = 60°F = 520°R. 

These units will be used in all equations in the text un- less otherwise stated. 

Example 4-1:  

Given the following data, determine the wellbore pres- sure required for an 

inflow rate of 3900 Mscfd assuming steady-state flow. 

 

Solution: 

The solution is iterative since 
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Pw is the unknown. As a first estimate, assume       

 

     Since the value for Z is the same as for Trial 2, the solution has converged 

and the required well pressure is 2400 psia. The solution would have been more 

complicated if a constant value for µ had not been assumed.  

    The above treatment of steady-state flow assumes no turbulent flow in the 

formation and no formation or skin damage around the wellbore. The effects of 

turbulence and skin will be examined in a following section.  

    Although steady-state flow in a gas reservoir is seldom reached, the 

conditions around the wellbore can approach steady-state. The steady-state 

equation including turbulence is 
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……………… (4.7) 

     The first term on the right hand side is the pressure drop from laminar or 

Darcy flow, while the second term gives the additional pressure drop due to 

turbulence. If the fluid properties are known and the permeability is known from 

some source such as a drawdown test, the turbulent effects can be calculated 

using the results of a test. This will be used later to distinguish between actual 

formation damage and turbulence. Values of the velocity coefficient B for 

various perm abilities and porosities can be obtained from Figure 4.5 or 

calculated from Equation 4-8.  

…………. (4.8) 

 

Where: k is in millidarcies. 

 

Figure 4-5: Gas velocity coefficient. 
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Pseudo-Steady-State Flow  

An equation for pseudo-steady-state flow can be de- rived that will show that  

 ……………. (4.9) 

 

     Although time does not appear explicitly in Equation 4-9, it should be 

remembered that both       and pw. will be declining at the same rate for a constant 

q once the pressure disturbance has reached the reservoir boundary.  

     The effects of skin damage and turbulence are sometimes included in 

Equation 4-9 as follows:  

…………… (4.10) 

 

Where  

S= dimensionless skin factor, and  

D = turbulence coefficient,  

It is frequently necessary to solve Equation 4-10 for pressure or pressure drop 

for a known qsc. 

  

                   ………….. (4.11) 

 

 

Unsteady-State Flow  

    It was stated earlier that any well flows in the un- steady-state or transient 

regime until the pressure disturbance reaches a reservoir boundary or until 

interference from other wells takes effect. Although the flow capacity of a well 

is desired for pseudo-steady-state or stabilized conditions, much useful 

information can be obtained from transient tests. This information includes 

permeability, skin factor, turbulence coefficient, and average reservoir pressure. 
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The procedures are developed in the section on transient testing. The 

relationships among flow rate, pressure, and time will be presented in this 

section for various conditions of well performance and reservoir types. It will be 

seen that the steady-state and pseudo-steady-state equations can be obtained 

from solution of the diffusivity equation as special cases. 

     The diffusivity equation can be derived by combining an unsteady-state 

continuity equation with Darcy's Law and the gas equation of state. The 

equation is  

……………. (4.12) 

 

    This equation can be solved for pressure as a function of flow rate and time, 

but the solutions and application of the solutions are simplified if the diffusivity 

equation is written in dimensionless form. This is accomplished by defining the 

following dimensionless variables: 

Table 4.1: Dimensionless variables 

 

The following units are to be used in calculating values for the dimensionless 

numbers in Table 4-1:  

(4-13) 

(4-14) 

(4-15) 

(4-16) 

(4-17) 

(4-13) 

(4-14) 

(4-15) 
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    The diffusivity equation in dimensionless variables becomes  

………………. (4-18) 

 

     Solutions to Equation 4-18 depend on the reservoir type and boundary 

conditions. The following solutions will be presented:  

1. Constant rate at well, infinite-acting reservoir (transient)  

2. Constant rate at well, finite-acting (closed) reservoir (pseudo-steady-state)  

3. Constant rate at well, constant pressure at outer boundary (steady-state)  

4. Constant well pressure. 

 

Case 1: 

     The most useful solution for transient flow is the so- called line source 

solution. The solution is  

……………. (4.19) 

     Values for the Ei or exponential integral term as a function of t, can be found 

in various mathematics hand- books, but for all practical purposes the function 

may be represented by a logarithmic approximation. That is, 

…………. (4.20) 

     Once a value of the dimensionless pressure drop App is obtained, the actual 

pressures may be calculated by using the definition of ΔpD, from Table 4-1.  

Example 4-2:  

Using the following data and assuming the well is still in the transient regime, 

calculate the pressure at the well after a flowing time of 1.5 days. 
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     Equation 4-20 applies for values of dimensionless time based on the well's 

drainage radius, tDe, less than 0.25. That is, the well will still be infinite-acting if 

 …………… (4.21) 

 

    Another restriction on the validity of Equation 4-20 is that tD should be 

greater than 100. If tD is less than 100, the Ei, solution (Equation 4-19) must be 

used. For most practical cases to will be greater than 100.  
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     Equation 4-20 may also be used to calculate pressure at a location other than 

the well. That is, r need not always be rw. For the solution to be valid, the 

dimensionless time based on the radius of interest must be greater than 100. That 

is, 

…………….. (4.22) 

 

Case 2: 

     The solution for wells that have reached pseudo-steady- state was presented 

by Van Everdingen and Hurst in 1949. The solution can be applied to calculate 

the pres- sure at any radius where the flow rate is known, which effectively 

limits its application to calculating well pressures. The solution is presented both 

in graphical form and equation form. Values of ΔpD versus tDw are presented in 

Figure 4-6 for various reservoir sizes, that is for various values of rDe. The 

equation form of the solution is 

  ……………. (4.23) 

 

Figure 4-6: Values of ΔpD/well for infinite reservoirs, for finite circular reservoirs with no flow at the 

external boundary, and for finite circular reservoirs with constant pressure at the external boundary. 
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Example 4-3: 

Using the data given in Example 4-2, find the pressure at the well after the well 

has been flowing for 1800 hours. 

 

 

Case 3: 

     If a well is producing from a reservoir with constant pressure at the outer 

boundary, that is, in the steady-state condition, the solution to the diffusivity 

equation is 
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………….. (4.24) 

    In this case the fixed pressure used in the definition of ΔpD is pe. rather than 

pi, where pe, is the constant pres- sure at the outer boundary. Substituting the 

definitions of the dimensionless variables will result in Equation 4- 6 presented 

earlier for steady-state flow.  

Case 4:  

The constant pressure solution to the diffusivity equation can be expressed as a 

function of a dimensionless cumulative production, QtD. QtD is defined as 

………………. (4.25) 

 

Where Gp, is the cumulative gas produced in Mscf. Values of QtD as a function 

of dimensionless time and radius have been presented both graphically and in 

table form. Figures 4-7 and 4-8 show values of QtD versus tD. 

Figure 4-7: Constant pressure functions. 
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Figure 4-8: Constant pressure functions. 

 

Noncircular Reservoirs  

     All of the previous equations were based on a single well draining a circular 

reservoir, which is rarely ever the actual case. The pressure behavior depends on 

the shape active to the boundaries. The time to reach stabilized or pseudo-

steady-state flow also depends on these factors.  

     The previous equations have been modified by Dietz as follows. If the well is 

still infinite-acting,  

…………… (4.26) 

 

Where A is the drainage area, for pseudo-steady-state,  

 ……… (4.27) 

 

Calculation of tDA is based on the drainage area and is defined as  
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…………… (4-28) 

 

The shape factor C as well as the value of tDA required to reach pseudo-steady 

state flow can be obtained from Table 4-2. 

TABLE 4-2: PSEUDO-STEADY STATE SHAPE FACTORS FOR VARIOUS RESERVOIRS

 

 



Asst. Lecturer Ahmed Razzaq  Fourth Stage 

21 

 

Example 4-3a:  

Rework Example 4-3 if the well is located in the center of a rectangular shaped 

(1 × 4) drainage area containing 220 acres. (9.58 * 10
6
 ft

2
). 

 

4-2 


