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FIRST LAW OF THERMODYNAMICS 
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Conservation of Mass 

 Conservation of mass is one of the most fundamental 

principles in nature. We are all familiar with this 

principle, and it is not difficult to understand it! 

 For closed system, the conservation of mass principle is 

implicitly used since the mass of the system remain 

constant during a process. 

 However, for control volume, mass can cross the 

boundaries. So the amount of mass entering and leaving 

the control volume must be considered. 
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Mass and Volume Flow Rates 

 Mass flow through a cross-sectional area per unit time is called the 

mass flow rate. Note the dot over the mass symbol indicates a time 

rate of change.  It is expressed as  

 dAVm .

 If the fluid density and velocity are constant over the flow cross-

sectional area, the mass flow rate is  
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Principal of Conservation of Mass 

 The conservation of mass principle for a control volume can be 

expressed as 

in out CVm m m 

 For a steady state, steady flow process the conservation of mass 

principle becomes 

(kg/s)in outm m
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 As the fluid upstream pushes mass across the control volume, work 

done on that unit of mass is  
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Flow Work & The Energy of a Flowing Fluid  
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 The total energy carried by a unit of mass as it crosses the control 

surface is the sum of the internal energy + flow work + potential 

energy + kinetic energy 
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 The first law for a control volume can be written as 
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Total Energy of a Flowing Fluid  
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Total Energy of a Flowing Fluid  

 The steady state, steady flow conservation of mass and first law of 

thermodynamics can be expressed in the following forms  
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Steady-flow Engineering Devices  
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Nozzle & Diffuser  

 Nozzle - device that increases 

the velocity fluid at the expense 

of pressure. 

 Diffuser - device that increases 

pressure of a fluid by slowing it 

down. 

 Commonly utilized in jet 

engines, rockets, space-craft 

and even garden hoses. 

 Q = 0 (heat transfer from the 

fluid to surroundings very 

small 

 W = 0 and ΔPE = 0 
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 Energy balance (nozzle & diffuser): 
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Example 3.6 

Steam at 0.4 MPa, 300ºC, 

enters an adiabatic nozzle with 

a low velocity and leaves at 0.2 

MPa with a quality of 90%.  

Find the exit velocity. 

Solution: 

 Simplified energy balance: 
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Example 3.7 

Air at 10°C and 80 kPa enters the 

diffuser of a jet engine steadily 

with a velocity of 200 m/s. The 

inlet area of the diffuser is 0.4 m2. 

The air leaves the diffuser with a 

velocity that is very small 

compared with the inlet velocity. 

Determine (a) the mass flow rate 

of the air and (b) the temperature 

of the air leaving the diffuser. 
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 Simplified energy balance: 

 From Ideal Gas Law: 
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 Mass flow rate 
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