Al-Ayen University College of Petroleum Engineering

Numerical Methods and Reservoir Simulation

Lecturer: Dr. Mohammed Idrees Al-Mossawy

Lecture 3: Basic Equations of Fluid Flow in Porous Media (Part 1)

1

Outlines

- □ Introduction
- **Types of fluids**
- **G** Flow Regimes
- □ Flow geometry
- □ Number of flowing fluids in the reservoir

Introduction

To formulate a mathematical model of reservoir simulation, the primary reservoir characteristics that need to be considered include:

- Types of fluids in the reservoir
- Flow regimes
- Flow geometry
- Number of flowing fluids in the reservoir

Types of fluids

- The isothermal compressibility coefficient is essentially the controlling factor in identifying the type of the reservoir fluid.
- The isothermal compressibility coefficient (c) is described mathematically by the following two equivalent expressions:

In terms of fluid volume:
$$c = \frac{-1}{V} \frac{\partial V}{\partial p}$$
(1)
In terms of fluid density: $c = \frac{1}{\rho} \frac{\partial \rho}{\partial p}$ (2)

In general, reservoir fluids are classified into three groups:

1. Incompressible fluids

$$\frac{\partial V}{\partial p} = o \quad \text{and} \quad \frac{\partial p}{\partial p} = o$$

Incompressible fluids do not exist; this behavior, however, may be assumed in some cases to simplify the derivation and the final form of many flow equations.

2. Slightly compressible fluids

These "slightly" compressible fluids exhibit small changes in volume, or density, with changes in pressure. Integrating Equation 1 gives:

$$-c \int_{p_{ref}}^{p} dp = \int_{V_{ref}}^{V} \frac{dV}{V}$$
$$e^{c(p_{ref}-p)} = \frac{V}{V_{ref}}$$

 $V = V_{ref} e^{c(p_{ref} - p)}$ where p = pressure, psia V = volume at pressure p, ft³ p_{ref} = initial (reference) pressure, psia V_{ref} = fluid volume at initial (reference) pressure, psia The e^x may be represented by a series expansion as: e^x = 1+x+ $\frac{x^2}{2!}$ + $\frac{x^3}{3!}$ +...+ $\frac{x^n}{n!}$

Because the exponent x [which represents the term c $(p_{ref.}-p)$] is very small for slightly compressible fluids, the e^x term can be approximated by truncating Equation to:

$$e^{x} = 1 + x$$

$$V = V_{ref} \left[1 + c \left(p_{ref} - p\right)\right]$$

A similar derivation is applied to density:

$$\rho = \rho_{ref} \left[1 - c \left(p_{ref} - p \right) \right]$$

3. Compressible Fluids

The isothermal compressibility of any compressible fluid is described by the following expression:

$$c_g = \frac{1}{p} - \frac{1}{z} \left(\frac{\partial z}{\partial p} \right)_T$$

Figures 1 and 2 show schematic illustrations of the volume and density changes as a function of pressure for the three types of fluids.

7

Flow Regimes

There are three flow regimes:

1. Steady-State Flow

$$\left(\frac{\partial p}{\partial t}\right)_i = 0$$

2. Unsteady-State Flow (frequently called *transient flow*)

$$\left(\frac{\partial p}{\partial t}\right) = f(i,t)$$

3. Pseudo steady-State Flow (or semisteady-state flow)

$$\left(\frac{\partial p}{\partial t}\right)_{i} = \text{constant}$$

Figure 3. Flow regimes.

Flow geometry

The actual flow geometry may be represented by one of the following flow geometries:

1. Radial Flow

2. Linear Flow

10

3. Spherical and Hemispherical Flow

Hemispherical flow in a partially penetrating well.

Number of flowing fluids in the reservoir

There are generally three cases of flowing systems:

- Single-phase flow (oil, water, or gas)
- Two-phase flow (oil-water, oil-gas, or gas-water)
- Three-phase flow (oil, water, and gas)

The description of fluid flow and subsequent analysis of pressure data becomes more difficult as the number of mobile fluids increases.

THANK YOU