Al-Ayen University
 College of Petroleum Engineering

Numerical Methods and Reservoir Simulation

Lecturer: Dr. Mohammed Idrees Al-Mossawy
2020/2021
L12: Methods of Solving Systems of Linear Equations (Part 5)
(Matrices and Determinants-Part 2)

Outline

\square Minor and Cofactor of Element
\square Singular and Non-Singular Matrices

- Adjoint of a Matrix
\square Inverse of a Matrix
\square Solution of Linear Equations by Matrices
\square Homework

Minor and Cofactor of Element:

For the determinant

$$
|A|=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{1}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

The minor of the element a_{11} is $\mathbf{M}_{11}=\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|$
The scalars $\mathrm{C}_{\mathrm{ij}}=(-1)^{i+j} \mathrm{M}_{\mathrm{ij}}$ are called the cofactor of the element a_{ij}

[^0]Example : Find the determinant of the matrix $A=\left[\begin{array}{rrr}\mathbf{0} & 2 & 1 \\ \mathbf{3} & -\mathbf{1} & 2 \\ \mathbf{4} & \mathbf{0} & \mathbf{1}\end{array}\right]$

Solution

Step 1: Find the minors of the matrix.

$$
\left[\begin{array}{lll}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{array}\right]
$$

$M_{11}=\left|\begin{array}{rr}-1 & 2 \\ 0 & 1\end{array}\right|=(-1)(1)-(0)(2)=-1-0=-1$
$M_{12}=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|=(3)(1)-(4)(2)=3-8=-5$
$M_{13}=\left|\begin{array}{rr}3 & -1 \\ 4 & 0\end{array}\right|=(3)(0)-(4)(-1)=0+4=4$
$M_{21}=\left|\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right|=(2)(1)-(0)(1)=2-0=2$
$M_{22}=\left|\begin{array}{ll}0 & 1 \\ 4 & 1\end{array}\right|=(0)(1)-(4)(1)=0-4=-4$
$M_{23}=\left|\begin{array}{ll}0 & 2 \\ 4 & 0\end{array}\right|=(0)(0)-(4)(2)=0-8=-8$

$$
\begin{aligned}
& M_{31}=\left|\begin{array}{rr}
2 & 1 \\
-1 & 2
\end{array}\right|=(2)(2)-(-1)(1)=4+1=5 \\
& M_{32}=\left|\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right|=(0)(2)-(3)(1)=0-3=-3 \\
& M_{33}=\left|\begin{array}{rr}
0 & 2 \\
3 & -1
\end{array}\right|=(0)(-1)-(3)(2)=0-6=-6 \\
& \begin{array}{|lll}
M_{11}=-1 & M_{12}=-5 & M_{13}=4 \\
M_{21}=2 & M_{22}=-4 & M_{23}=-8 \\
M_{31}=5 & M_{32}=-3 & M_{33}=-6
\end{array}
\end{aligned}
$$

Step 2: Determine the cofactors using the formula

$$
C_{i j}=(-1)^{i+j} M_{i j}
$$

$C_{11}=(-1)^{1+1} M_{11}=(-1)^{2}(-1)=(1)(-1)=-1$
$C_{12}=(-1)^{1+2} M_{12}=(-1)^{3}(-5)=(-1)(-5)=5$
$C_{13}=(-1)^{1+3} M_{13}=(-1)^{4}(4)=(1)(4)=4$

$$
\begin{aligned}
& C_{21}=(-1)^{2+1} M_{21}=(-1)^{3}(2)=(-1)(2)=-2 \\
& C_{22}=(-1)^{2+2} M_{22}=(-1)^{4}(-4)=(1)(-4)=-4 \\
& C_{23}=(-1)^{2+3} M_{23}=(-1)^{5}(-8)=(-1)(-8)=8 \\
& C_{31}=(-1)^{3+1} M_{31}=(-1)^{4}(5)=(1)(5)=5 \\
& C_{32}=(-1)^{3+2} M_{32}=(-1)^{5}(-3)=(-1)(-3)=3 \\
& C_{33}=(-1)^{3+3} M_{33}=(-1)^{6}(-6)=(1)(-6)=-6 \\
& \begin{array}{lll}
C_{11}=-1 & C_{12}=5 & C_{13}=4 \\
C_{21}=-2 & C_{22}=-4 & C_{23}=8
\end{array} \\
& C_{31}=5 \quad C_{32}=\mathbf{3} \quad C_{33}=-6
\end{aligned}
$$

Step 3: Select any row or column of the matrix and then, using the formula
$|A|=a_{11} C_{11}+a_{12} C_{12}+\ldots+a_{1 \mathrm{n}} C_{1 \mathrm{n}}$

$$
\begin{aligned}
|A| & =a_{21} C_{21}+a_{22} C_{22}+a_{23} C_{23} \\
& =(3)(-2)+(-1)(-4)+(2)(8)=14
\end{aligned}
$$

$$
\begin{aligned}
|A| & =a_{13} C_{13}+a_{23} C_{23}+a_{33} C_{33} \\
& =(1)(4)+(2)(8)+(1)(-6)=14
\end{aligned}
$$

Example : Find the determinant of the matrix $A=\left[\begin{array}{rrrr}\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{0} \\ -\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{2} \\ \mathbf{0} & \mathbf{2} & \mathbf{0} & \mathbf{3} \\ \mathbf{3} & 4 & \mathbf{0} & \mathbf{2}\end{array}\right]$

Determinant of a 4×4 matrix

Solution

For this example, the second column will be used even though the third column is the simplest to solve for.

$$
\begin{aligned}
|A| & =2 C_{12}+1 C_{22}+2 C_{32}+4 C_{42} \\
C_{12} & =(-1)^{3}\left|\begin{array}{rrr}
-1 & 0 & 2 \\
0 & 0 & 3 \\
3 & 0 & 2
\end{array}\right|=-\left|\begin{array}{rrr}
-1 & 0 & 2 \\
0 & 0 & 3 \\
3 & 0 & 2
\end{array}\right| \\
& \left.=-\left[2(-1)^{4}\left|\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right|+3(-1)^{5}\left|\begin{array}{rr}
-1 & 0 \\
3 & 0
\end{array}\right|+2(-1)^{6}\left|\begin{array}{rr}
-1 & 0 \\
0 & 0
\end{array}\right|\right] \right\rvert\, \\
& =-[2(0-0)-3(0-0)+2(0-0)]=0 \\
C_{22} & =(-1)^{4}\left|\begin{array}{lll}
1 & 3 & 0 \\
0 & 0 & 3 \\
3 & 0 & 2
\end{array}\right|=\left|\begin{array}{lll}
1 & 3 & 0 \\
0 & 0 & 3 \\
3 & 0 & 2
\end{array}\right| \\
& \left.=1(-1)^{2}\left|\begin{array}{ll}
0 & 3 \\
0 & 2
\end{array}\right|+0(-1)^{3}\left|\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right|+3(-1)^{4}\left|\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right| \right\rvert\, \\
& =1(0-0)+0(6-0)+3(9-0)=27
\end{aligned}
$$

Singular and Non-singular Matrices:

A square matrix A is called singular if $|A|=0$ and is non-singular if $|A| \neq 0$.
$A=\left[\begin{array}{ll}3 & 2 \\ 9 & 6\end{array}\right]$, then $|A|=0$, Hence A is singular
$A=\left[\begin{array}{ccc}3 & 1 & 6 \\ -1 & 3 & 2 \\ 1 & 0 & 0\end{array}\right]$, then $|A| \neq 0$, Hence A is non-singular.

Adjoint of a Matrix:

Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ be a square matrix of order n x n and $\left(\mathrm{c}_{\mathrm{ij}}\right)$ is a matrix obtained by replacing each element a_{ij} by its corresponding cofactor c_{ij} then $\left(\mathrm{c}_{\mathrm{ij}}\right)^{\mathrm{t}}$ is called the adjoint of A . It is written as adj. A.
For example, if $\quad \mathrm{A}=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 3 & 1 \\ 0 & 1 & 2\end{array}\right] \begin{aligned} & \text { Cofactor of } A \\ & A_{11}=5, \\ & A_{21}=-1, \\ & A_{31}=3,\end{aligned}$

$$
\begin{array}{ll}
\mathrm{A}_{12}=-2, & \mathrm{~A}_{13}=+1 \\
\mathrm{~A}_{22}=2, & \mathrm{~A}_{23}=-1 \\
\mathrm{~A}_{32}=-2, & \mathrm{~A}_{33}=3
\end{array}
$$

Matrix of cofactors is $\mathrm{C}=\left[\begin{array}{ccc}5 & -2 & +1 \\ -1 & 2 & -1 \\ 3 & -2 & 3\end{array}\right] \quad$ Hence $\operatorname{adj} \mathrm{A}=\mathrm{C}^{\mathrm{t}}=\left[\begin{array}{ccc}5 & -1 & 3 \\ -2 & 2 & -2 \\ +1 & -1 & 3\end{array}\right]$

Inverse of a Matrix:

If A is a non-singular square matrix, then $\quad A^{-1}=\frac{\operatorname{adj} A}{|A|}$
For example if matrix $\quad A=\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right]$, then \quad adj $A=\left[\begin{array}{rr}2 & -4 \\ -1 & 3\end{array}\right]$
$|A|=\left|\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right|=6-4=2$
Hence $\quad \mathrm{A}^{-1}=\frac{\operatorname{adj} \mathrm{A}}{|\mathrm{A}|}=\frac{1}{2}\left[\begin{array}{rr}2 & -4 \\ -1 & 3\end{array}\right]$

Example: Find the inverse, if it exists, of the matrix.

$$
A=\left[\begin{array}{ccc}
0 & -2 & -3 \\
1 & 3 & 3 \\
-1 & -2 & -2
\end{array}\right]
$$

Solution: $\quad|\mathrm{A}|=0+2(-2+3)-3(-2+3)=2-3$ $|A|=-1$, Hence solution exists.
Cofactor of A are:

$$
\begin{array}{lll}
\mathrm{A}_{11}=0, & \mathrm{~A}_{12}=1, & \mathrm{~A}_{13}=1 \\
\mathrm{~A}_{21}=2, & \mathrm{~A}_{22}=-3, & \mathrm{~A}_{23}=2 \\
\mathrm{~A}_{31}=3, & \mathrm{~A}_{32}=-3, & \mathrm{~A}_{33}=2
\end{array}
$$

Matrix of transpose of the cofactors is

$$
\begin{aligned}
& \operatorname{adj} \mathrm{A}=\mathrm{C}^{\prime}=\left[\begin{array}{ccc}
0 & 2 & 3 \\
-1 & -3 & -3 \\
1 & 2 & 2
\end{array}\right] \\
& \text { So } \\
& \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A}=\frac{1}{-1}\left[\begin{array}{ccc}
0 & 2 & 3 \\
-1 & -3 & -3 \\
1 & 2 & 2
\end{array}\right]=\left[\begin{array}{ccc}
0 & -2 & -3 \\
1 & 3 & 3 \\
-1 & -2 & -2
\end{array}\right]
\end{aligned}
$$

Solution of Linear Equations by Matrices:

Consider the linear system:

It can be written as the matrix equation

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots-\cdots-a_{1 n} \\
a_{21} & a_{22} & \cdots---a_{2 n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\end{array}\right] \longrightarrow A X=B \rightarrow X=A^{-1} B} \\
& \text { A X } \\
& \text { B }
\end{aligned}
$$

Example: Use matrices to find the solution set of

$$
\begin{array}{r}
x+y-2 z=3 \\
3 x-y+z=5 \\
3 x+3 y-6 z=9
\end{array}
$$

Solution:
Let $\quad \mathrm{A}=\left[\begin{array}{ccc}1 & 1 & -2 \\ 3 & -1 & 1 \\ 3 & 3 & -6\end{array}\right]$
Since $\quad|A|=3+21-24=0$

Hence the solution of the given linear equations does not exists.

Example: Use matrices to find the solution set of $4 x+8 y+z=-6$

$$
\begin{aligned}
& 2 x-3 y+2 z=0 \\
& x+7 y-3 z=-8
\end{aligned}
$$

Solution:

$$
\left.\begin{array}{l}
\text { Let } \mathrm{A}=\left[\begin{array}{ccc}
4 & 8 & 1 \\
2 & -3 & 2 \\
1 & 7 & -3
\end{array}\right] \quad|\mathrm{A}| \quad=-32+48+17=61 \quad \text { So } \mathrm{A}^{-1} \text { exists. } \\
\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A}=\frac{1}{61}\left[\begin{array}{ccc}
-5 & 31 & 19 \\
8 & -13 & -16 \\
17 & -20 & -28
\end{array}\right] \\
\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\frac{1}{61}\left[\begin{array}{c}
-5 \\
\mathrm{x} \\
8 \\
\hline
\end{array} \frac{-13}{} \begin{array}{c}
-16 \\
17
\end{array}-20-28\right]\left[\begin{array}{c}
-6 \\
0 \\
-8
\end{array}\right]=\frac{1}{61}\left[\begin{array}{c}
30+152 \\
-48+48 \\
-102+224
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right] .
$$

Hence Solution set: $\{(\mathrm{x}, \mathrm{y}, \mathrm{z})\}=\{(-2,0,2)\}$

Homework

Use the matrices method to solve the following system of equations:
1.9 P1-0.45 P2 $=5125$
$-0.45 \mathrm{P} 1+1.9 \mathrm{P} 2-0.45 \mathrm{P} 3=4000$
$-0.45 \mathrm{P} 2+1.9 \mathrm{P} 3=5800$

THANK YOU

[^0]: Note: The value of the determinant in equation (1) can also be found by its minor elements or cofactors, as $\mathrm{a}_{11} \mathrm{M}_{11}-\mathrm{a}_{12} \mathrm{M}_{12}+\mathrm{a}_{13} \mathrm{M}_{13} \quad$ Or $\quad \mathrm{a}_{11} \mathrm{C}_{11}+\mathrm{a}_{12} \mathrm{C}_{12}+\mathrm{a}_{13} \mathrm{C}_{13}$
 Hence the $\operatorname{det} \mathrm{A}$ is the sum of the elements of any row or column multiplied by their corresponding cofactors.

