Tutorial

Example 3-1:

Three pounds of n-butane are placed in a vessel at 120°F and 60 psia. Calculate the volume of the gas assuming an ideal gas behavior.

Solution:

Step 1: Determine the molecular weight of n-butane from Table 2.1 to give

$$M_a = 58.123$$

Step 2: Solve Equation of state for the volume of gas

$$V = \left(\frac{m}{M}\right) \frac{RT}{p}$$
$$V = \left(\frac{3}{58.123}\right) \frac{(10.73)(120 + 460)}{60} = 5.35 \,\text{ft}^3$$

Example 3-2:

Using the data given in the above example, calculate the density of n-butane. **Solution:**

$$\rho_{g} = \frac{m}{V} = \frac{pM}{RT}$$

$$\rho_{g} = \frac{(60)(58.123)}{(10.73)(120 + 460)} = 0.56 \text{ lb/ft}^{3}$$

Example 3-3:

A gas well is producing gas with a specific gravity of 0.65 at a rate of 1.1 MMscf/day. The average reservoir pressure and temperature are 1,500 psi and 150°F. Calculate:

- a. Apparent molecular weight of the gas
- b. Gas density at reservoir conditions
- c. Flow rate in lb/day

Solution:

a. determine the apparent molecular weight

$$M_a = 28.96 \gamma_g$$

 $M_a = (28.96) (0.65) = 18.82$

b. determine gas density

$$\rho g = \frac{PM}{RT}$$

$$\rho_{g} = \frac{(1500)(18.82)}{(10.73)(610)} = 4.31 \, \text{lb/ft}^{3}$$

c.

Step 1: Because 1 lb-mol of any gas occupies 379.4 scf at standard conditions, then the daily number of moles that the gas well is producing can be calculated from

$$n = \frac{(1.1)(|10)^6}{379.4} = 2899 \,lb - mol$$

Step 2: Determine the daily mass m of the gas produced

$$m = (n)(M_a)$$

 $m = (2899)(18.82) = 54559 lb/day$

Example 3-4:

A gas well is producing a natural gas with the following composition:

Component	Уі		
CO ₂	0.05		
C1	0.90		
C ₂	0.03		
C ₃	0.02		

Assuming an ideal gas behavior, calculate:

- a. Apparent molecular weight
- b. Specific gravity
- c. Gas density at 2000 psia and 150°F
- d. Specific volume at 2000 psia and $150^{\circ}F$
- **Solution:**

Component	y i	Mi	y _i ● M _i
CO ₂	0.05	44.01	2.200
C ₁	0.90	16.04	14.436
C ₂	0.03	30.07	0.902
C ₃	0.02	44.11	0.882
			$M_a = 18$

a. calculate the apparent molecular weight

$$M_a \!=\! \sum_{i=1} \! y_i M_i$$

$$M_a = 18.42$$

b. Calculate the specific gravity

$$\gamma_g = M_a/28.96 = 18.42/28.96 = 0.636$$

c. Calculate the density

$$\rho_g \!=\! \frac{PM_a}{RT} \!=\! \frac{(2000)(18.42)}{(10.73)(610)} \!=\! 5.628 lb/ft^3$$

d. Determine the specific volume

$$v = \frac{1}{\rho} = \frac{1}{5.628} = 0.178 \text{ ft}^3/\text{lb}$$

Example 3-5:

A gas reservoir has the following gas composition: the initial reservoir pressure and temperature are 3000 psia and 180°F, respectively.

Component	Yi		
CO ₂	0.02		
N ₂	0.01		
CI	0.85		
C_2	0.04		
C ₃	0.03		
i - C4	0.03		
n - C ₄	0.02		

Calculate the gas compressibility factor under initial reservoir conditions. **Solution:**

Component	Yi	T _{ci} ,°R	y _i T _{ci}	P _{ci}	yi Pci
CO ₂	0.02	547.91	10.96	1071	21.42
N ₂	0.01	227.49	2.27	493.1	4.93
C ₁	0.85	343.33	291.83	666.4	566.44
C ₂	0.04	549.92	22.00	706.5	28.26
C ₃	0.03	666.06	19.98	616.4	18.48
i - C4	0.03	734.46	22.03	527.9	15.84
n - C ₄	0.02	765.62	15.31	550.6	11.01
			$T_{pc} = 383.38$		$p_{pc} = 666.38$

Step 1: Determine the pseudo-critical pressure and the pseudo-critical temperature:

$$p_{pc} = \sum_{i=1}^{n} y_i p_{ci}$$
$$T_{pc} = \sum_{i=1}^{n} y_i T_{ci}$$

Ppc= 666.38 psia

Step 2: Calculate the pseudo-reduced pressure and temperature

$$p_{pr} = \frac{3000}{666.38} = 4.50$$
$$T_{pr} = \frac{640}{383.38} = 1.67$$

Step 3: Determine the z-factor from Figure:

$$Z = 0.85$$

Example 3-6:

Using the data in Example 3-5 and assuming real gas behavior, calculate the density of the gas phase under initial reservoir conditions. Compare the results with that of ideal gas behavior.

SAIITIAN	•
Joiulion	•

Component	Yi	Mi	y _i ● M _i	T _{ci} ,° R	y _i T _{ci}	р _{сі}	yi p _{ci}
CO ₂	0.02	44.01	0.88	547.91	10.96	1071	21.42
N ₂	0.01	28.01	0.28	227.49	2.27	493.1	4.93
C ₁	0.85	16.04	13.63	343.33	291.83	666.4	566.44
C ₂	0.04	30.1	1.20	549.92	22.00	706.5	28.26
C ₃	0.03	44.1	1.32	666.06	19.98	616.40	18.48
i - C4	0.03	58.1	1.74	734.46	22.03	527.9	15.84
n -C ₄	0.02	58.1	1.16	765.62	15.31	550.6	11.01
			$M_a =$	20.23	$T_{pc} =$	383.38	$P_{pc} = 666.38$

Step 1: Calculate the apparent molecular weight Ma=20.23

Step 2: Determine the pseudo-critical pressure

Ppc = 666.18

Step 3: Calculate the pseudo-critical temperature

Tpc = 383:38

Step 4: Calculate the pseudo-reduced pressure and temperature

$$p_{pr} = \frac{3000}{666.38} = 4.50$$
$$T_{pr} = \frac{640}{383.38} = 1.67$$

Step 5: Determine the z-factor from Figure

Step 6: Calculate the density of the gas assuming a real gas behavior:

$$\rho g = \frac{PM}{ZRT}$$

$$\rho_{\rm g} = \frac{(3000)(20.23)}{(0.85)(10.73)(640)} = 10.4 \, \text{lb/ft}^3$$

Step 7: Calculate the density of the gas assuming an ideal gas behavior

$$\rho g = \frac{PM}{RT}$$

$$\rho_g = \frac{(3000)(20.23)}{(10.73)(640)} = 8.84 \, \text{lb/ft}^3$$

The results of the above example show that the ideal gas equation estimated the gas density with an absolute error of 15% when compared with the density value as predicted with the real gas equation.

Example 3-7:

Rework Example 3-5 by calculating the pseudo-critical properties from Equations 3-16 and 3-17.

Solution:

Step 1: Calculate the specific gravity of the gas:

$$\gamma_{\rm g} = \frac{M_{\rm a}}{28.96} = \frac{20.23}{28.96} = 0.699$$

Step 2: Solve for the pseudo-critical properties by applying Equations 3-16 and 3-17:

$$T_{pc} = 168 + 325(0.699) - 12.5(0.699)^{2} = 389.1^{\circ}R$$
$$p_{pc} = 677 + 15(0.699) - 37.5(0.699)^{2} = 669.2 \text{ psia}$$

Step 3: Calculate Ppr and Tpr.

$$p_{pr} = \frac{3000}{669.2} = 4.48$$
$$T_{pr} = \frac{640}{389.1} = 1.64$$

Step 4: Determine the gas compressibility factor from Figure:

Z = 0.845

Example 3-8:

A gas well is producing at a rate of 15,000 ft3/day from a gas reservoir at an average pressure of 2,000 psia and a temperature of 120°F. The specific gravity is 0.72. Calculate the gas flow rate in scf/day.

Solution:

Step 1: Calculate the pseudo-critical properties from equations 3-16 and 3-17.

Step 2: Calculate the Ppr and Tpr:

$$p_{pr} = \frac{2000}{668.4} = 2.29$$
$$T_{pr} = \frac{600}{395.5} = 1.52$$

Step 3: Determine the z-factor from Figure:

Step 4: Calculate the gas expansion factor

$$E_g = 35.37 \frac{p}{zT}$$
, scf/ft³

$$E_g = 35.37 \frac{2000}{(0.78)(600)} = 151.15 \text{ scf}/\text{ft}^3$$

Step 5: Calculate the gas flow rate in scf/day by multiplying the gas flow rate (in ft3/day) by the gas expansion factor Eg as expressed in scf/ft3: Gas flow rate = (151.15) (15,000) = 2.267 MMscf/day

Example 3-9:

Using the data given in Example 3-8, calculate the viscosity of the gas. **Solution:**

Step 1: Calculate the apparent molecular weight of the gas:

$$M_{a} = \gamma_{g} * 28.96$$

$$M_a = 0.72 * 28.96 = 20.85$$

Step 2: Determine the viscosity of the gas at 1 atm and 140°F from Figure 3-3 $\mu 1 = 0.0113$

Step 3: Calculate Ppr and Tpr:

$$Ppr = 2.99$$
$$Tpr = 1.52$$

Step 4: Determine the viscosity rates from Figure 3-4

$$\frac{\mu g}{\mu 1} = 1.5$$

Step 5: Solve for the viscosity of the natural gas:

$$\mu g = \frac{\mu g}{\mu 1} * \mu 1 = 1.5 * 0.0113 = 0.01695 \text{ cp}$$