Tutorial

Example 3-1:

Three pounds of n-butane are placed in a vessel at $120^{\circ} \mathrm{F}$ and 60 psia . Calculate the volume of the gas assuming an ideal gas behavior.

Solution:

Step 1: Determine the molecular weight of n-butane from Table 2.1 to give

$$
\mathrm{M}_{\mathrm{a}}=58.123
$$

Step 2: Solve Equation of state for the volume of gas

$$
\begin{aligned}
& V=\left(\frac{m}{M}\right) \frac{R T}{p} \\
& V=\left(\frac{3}{58.123}\right) \frac{(10.73)(120+460)}{60}=5.35 \mathrm{ft}^{3}
\end{aligned}
$$

Example 3-2:

Using the data given in the above example, calculate the density of n-butane.
Solution:

$$
\begin{gathered}
\rho_{\mathrm{g}}=\frac{\mathrm{m}}{\mathrm{~V}}=\frac{\mathrm{pM}}{\mathrm{RT}} \\
\rho_{\mathrm{g}}=\frac{(60)(58.123)}{(10.73)(120+460)}=0.56 \mathrm{lb} / \mathrm{ft}^{3}
\end{gathered}
$$

Example 3-3:

A gas well is producing gas with a specific gravity of 0.65 at a rate of 1.1 MMscf/day. The average reservoir pressure and temperature are $1,500 \mathrm{psi}$ and $150^{\circ} \mathrm{F}$. Calculate:
a. Apparent molecular weight of the gas
b. Gas density at reservoir conditions
c. Flow rate in lb/day

Solution:

a. determine the apparent molecular weight

$$
\begin{gathered}
\mathrm{M}_{\mathrm{a}}=28.96 \gamma_{g} \\
\mathrm{M}_{\mathrm{a}}=(28.96)(0.65)=18.82
\end{gathered}
$$

b. determine gas density

$$
\begin{gathered}
\rho \mathrm{g}=\frac{\mathrm{PM}}{\mathrm{RT}} \\
\rho_{\mathrm{g}}=\frac{(1500)(18.82)}{(10.73)(610)}=4.31 \mathrm{lb} / \mathrm{ft}^{3}
\end{gathered}
$$

c.

Step 1: Because $1 \mathrm{lb}-\mathrm{mol}$ of any gas occupies 379.4 scf at standard conditions, then the daily number of moles that the gas well is producing can be calculated from

$$
\mathrm{n}=\frac{(1.1)(10)^{6}}{379.4}=2899 \mathrm{lb}-\mathrm{mol}
$$

Step 2: Determine the daily mass m of the gas produced

$$
\begin{aligned}
& \mathrm{m}=(\mathrm{n})\left(\mathrm{M}_{\mathrm{a}}\right) \\
& \mathrm{m}=(2899)(18.82)=54559 \mathrm{lb} / \text { day }
\end{aligned}
$$

Example 3-4:

A gas well is producing a natural gas with the following composition:

Component	y_{i}
CO_{2}	0.05
C_{1}	0.90
C_{2}	0.03
C_{3}	0.02

Assuming an ideal gas behavior, calculate:
a. Apparent molecular weight
b. Specific gravity
c. Gas density at 2000 psia and $150^{\circ} \mathrm{F}$
d. Specific volume at 2000 psia and $150^{\circ} \mathrm{F}$

Solution:

Component	$y_{\mathbf{i}}$	$\mathbf{M}_{\mathbf{i}}$	$\mathrm{y}_{\mathbf{i}} \bullet \mathbf{M}_{\mathbf{i}}$
CO_{2}	0.05	44.01	2.200
C_{1}	0.90	16.04	14.436
C_{2}	0.03	30.07	0.902
C_{3}	0.02	44.11	$\underline{0.882}$
			$\mathrm{M}_{\mathrm{a}}=18.42$

a. calculate the apparent molecular weight

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{a}}=\sum_{\mathrm{i}=1} \mathrm{y}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}} \\
& \mathrm{M}_{\mathrm{a}}=18.42
\end{aligned}
$$

b. Calculate the specific gravity

$$
\gamma_{\mathrm{g}}=\mathrm{M}_{\mathrm{a}} / 28.96=18.42 / 28.96=0.636
$$

c. Calculate the density

$$
\rho_{\mathrm{g}}=\frac{\mathrm{PM}_{\mathrm{a}}}{\mathrm{RT}}=\frac{(2000)(18.42)}{(10.73)(610)}=5.628 \mathrm{lb} / \mathrm{ft}^{3}
$$

d. Determine the specific volume

$$
\mathrm{v}=\frac{1}{\rho}=\frac{1}{5.628}=0.178 \mathrm{ft}^{3} / \mathrm{lb}
$$

Example 3-5:

A gas reservoir has the following gas composition: the initial reservoir pressure and temperature are 3000 psia and $180^{\circ} \mathrm{F}$, respectively.

Component	$y_{\mathbf{i}}$
CO_{2}	0.02
$\mathrm{~N}_{2}$	0.01
C_{1}	0.85
C_{2}	0.04
C_{3}	0.03
$\mathrm{i}-\mathrm{C}_{4}$	0.03
$\mathrm{n}-\mathrm{C}_{4}$	0.02

Calculate the gas compressibility factor under initial reservoir conditions.
Solution:

Component	$\mathrm{y}_{\mathbf{i}}$	$\mathrm{T}_{\mathrm{ci}}{ }^{\circ} \mathrm{R}$	$\mathrm{y}_{\mathbf{i}} \mathrm{T}_{\mathbf{c} \boldsymbol{i}}$	P_{ci}	$\mathrm{y}_{\mathbf{i}} \mathrm{p}_{\mathrm{ci}}$
CO_{2}	0.02	547.91	10.96	1071	21.42
$\mathrm{~N}_{2}$	0.01	227.49	2.27	493.1	4.93
C_{1}	0.85	343.33	291.83	666.4	566.44
C_{2}	0.04	549.92	22.00	706.5	28.26
C_{3}	0.03	666.06	19.98	616.4	18.48
$\mathrm{i}-\mathrm{C}_{4}$	0.03	734.46	22.03	527.9	15.84
$\mathrm{n}-\mathrm{C}_{4}$	0.02	765.62	15.31	550.6	11.01
			$\mathrm{~T}_{\mathrm{pc}}=383.38$		$\mathrm{p}_{\mathrm{pc}}=666.38$

Step 1: Determine the pseudo-critical pressure and the pseudo-critical temperature:

$$
\begin{gathered}
\mathrm{p}_{\mathrm{pc}}=\sum_{\mathrm{i}=1} \mathrm{y}_{\mathrm{i}} \mathrm{p}_{\mathrm{ci}} \\
\mathrm{~T}_{\mathrm{pc}}=\sum_{\mathrm{i}=1} \mathrm{y}_{\mathrm{i}} \mathrm{~T}_{\mathrm{ci}} \\
\mathrm{Ppc}=666.38 \mathrm{psia} \\
\mathrm{Tpc}=383.38 \mathrm{R}
\end{gathered}
$$

Step 2: Calculate the pseudo-reduced pressure and temperature

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{pr}}=\frac{3000}{666.38}=4.50 \\
& \mathrm{~T}_{\mathrm{pr}}=\frac{640}{383.38}=1.67
\end{aligned}
$$

Step 3: Determine the z-factor from Figure:

$$
Z=0.85
$$

Example 3-6:
Using the data in Example 3-5 and assuming real gas behavior, calculate the density of the gas phase under initial reservoir conditions. Compare the results with that of ideal gas behavior.

Solution:

Component	$\mathrm{y}_{\mathbf{i}}$	$\mathrm{M}_{\mathbf{i}}$	$\mathrm{y}_{\mathbf{i}} \bullet \mathrm{M}_{\mathbf{i}}$	$\mathrm{T}_{\mathbf{c},},{ }^{\circ} \mathbf{R}$	$\mathrm{y}_{\mathbf{i}} \mathrm{T}_{\mathbf{c}}$	$\mathrm{p}_{\mathbf{c i}}$	$\mathrm{y}_{\mathbf{i}} \mathbf{p}_{\mathbf{c i}}$
CO_{2}	0.02	44.01	0.88	547.91	10.96	1071	21.42
$\mathrm{~N}_{2}$	0.01	28.01	0.28	227.49	2.27	493.1	4.93
C_{1}	0.85	16.04	13.63	343.33	291.83	666.4	566.44
C_{2}	0.04	30.1	1.20	549.92	22.00	706.5	28.26
C_{3}	0.03	44.1	1.32	666.06	19.98	616.40	18.48
$\mathrm{i}-\mathrm{C}_{4}$	0.03	58.1	1.74	734.46	22.03	527.9	15.84
$\mathrm{n}-\mathrm{C}_{4}$	0.02	58.1	1.16	765.62	15.31	550.6	11.01
			$\mathrm{M}_{\mathrm{a}}=20.23$	$\mathrm{~T}_{\mathrm{pc}}=383.38$	$\mathrm{P}_{\mathrm{pc}}=666.38$		

Step 1: Calculate the apparent molecular weight

$$
\mathrm{Ma}=20.23
$$

Step 2: Determine the pseudo-critical pressure

$$
\mathrm{Ppc}=666.18
$$

Step 3: Calculate the pseudo-critical temperature

$$
\mathrm{Tpc}=383: 38
$$

Step 4: Calculate the pseudo-reduced pressure and temperature

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{pr}}=\frac{3000}{666.38}=4.50 \\
& \mathrm{~T}_{\mathrm{pr}}=\frac{640}{383.38}=1.67
\end{aligned}
$$

Step 5: Determine the z -factor from Figure

$$
\mathrm{Z}=0.85
$$

Step 6: Calculate the density of the gas assuming a real gas behavior:

$$
\rho g=\frac{\mathrm{PM}}{\mathrm{ZRT}}
$$

$$
\rho_{\mathrm{g}}=\frac{(3000)(20.23)}{(0.85)(10.73)(640)}=10.4 \mathrm{lb} / \mathrm{ft}^{3}
$$

Step 7: Calculate the density of the gas assuming an ideal gas behavior

$$
\begin{gathered}
\rho g=\frac{\mathrm{PM}}{\mathrm{RT}} \\
\rho_{\mathrm{g}}=\frac{(3000)(20.23)}{(10.73)(640)}=8.84 \mathrm{lb} / \mathrm{ft}^{3}
\end{gathered}
$$

The results of the above example show that the ideal gas equation estimated the gas density with an absolute error of 15% when compared with the density value as predicted with the real gas equation.

Example 3-7:

Rework Example 3-5 by calculating the pseudo-critical properties from Equations 3-16 and 3-17.
Solution:
Step 1: Calculate the specific gravity of the gas:

$$
\gamma_{\mathrm{g}}=\frac{\mathrm{M}_{\mathrm{a}}}{28.96}=\frac{20.23}{28.96}=0.699
$$

Step 2: Solve for the pseudo-critical properties by applying Equations 3-16 and 3-17:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{pc}}=168+325(0.699)-12.5(0.699)^{2}=389.1^{\circ} \mathrm{R} \\
& \mathrm{p}_{\mathrm{pc}}=677+15(0.699)-37.5(0.699)^{2}=669.2 \mathrm{psia}
\end{aligned}
$$

Step 3: Calculate Ppr and Tpr.

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{pr}}=\frac{3000}{669.2}=4.48 \\
& \mathrm{~T}_{\mathrm{pr}}=\frac{640}{389.1}=1.64
\end{aligned}
$$

Step 4: Determine the gas compressibility factor from Figure:

$$
\mathrm{Z}=0.845
$$

Example 3-8:
A gas well is producing at a rate of $15,000 \mathrm{ft} 3 /$ day from a gas reservoir at an average pressure of $2,000 \mathrm{psia}$ and a temperature of $120^{\circ} \mathrm{F}$. The specific gravity is 0.72 . Calculate the gas flow rate in scf/day.

Solution:

Step 1: Calculate the pseudo-critical properties from equations 3-16 and 3-17.

$$
\begin{gathered}
\mathrm{Tpc}=395.5 \mathrm{R} \\
\mathrm{Ppc}=668.4 \mathrm{psia}
\end{gathered}
$$

Step 2: Calculate the Ppr and Tpr:

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{pr}}=\frac{2000}{668.4}=2.29 \\
& \mathrm{~T}_{\mathrm{pr}}=\frac{600}{395.5}=1.52
\end{aligned}
$$

Step 3: Determine the z-factor from Figure:

$$
\mathrm{Z}=0.78
$$

Step 4: Calculate the gas expansion factor

$$
\begin{gathered}
\mathrm{E}_{\mathrm{g}}=35.37 \frac{\mathrm{p}}{\mathrm{zT}}, \mathrm{scf} / \mathrm{ft}^{3} \\
\mathrm{E}_{\mathrm{g}}=35.37 \frac{2000}{(0.78)(600)}=151.15 \mathrm{scf} / \mathrm{ft}^{3}
\end{gathered}
$$

Step 5: Calculate the gas flow rate in scf/day by multiplying the gas flow rate (in $\mathrm{ft} 3 /$ day) by the gas expansion factor Eg as expressed in $\mathrm{scf} / \mathrm{ft} 3$: Gas flow rate $=(151.15)(15,000)=2.267 \mathrm{MMscf} /$ day

Example 3-9:

Using the data given in Example 3-8, calculate the viscosity of the gas.
Solution:
Step 1: Calculate the apparent molecular weight of the gas:

$$
\mathrm{M}_{\mathrm{a}}=\gamma_{\mathrm{g}} * 28.96
$$

$$
\mathrm{M}_{\mathrm{a}}=0.72 * 28.96=20.85
$$

Step 2: Determine the viscosity of the gas at 1 atm and $140^{\circ} \mathrm{F}$ from Figure 3-3

$$
\mu 1=0.0113
$$

Step 3: Calculate Ppr and Tpr:

$$
\begin{aligned}
& \mathrm{Ppr}=2.99 \\
& \mathrm{Tpr}=1.52
\end{aligned}
$$

Step 4: Determine the viscosity rates from Figure 3-4

$$
\frac{\mu g}{\mu 1}=1.5
$$

Step 5: Solve for the viscosity of the natural gas:

$$
\mu g=\frac{\mu g}{\mu 1} * \mu 1=1.5 * 0.0113=0.01695 \mathrm{cp}
$$

