Al-Ayen University College of Petroleum Engineering

Numerical Methods and Reservoir Simulation

Lecturer: Dr. Mohammed Idrees Al-Mossawy

2020/2021

L14: (1) Introduction to Grid Systems & Boundary Conditions(2) Incorporation of Dirichlet Boundary Conditions to Block-Centered Grids

Outline

- □ Introduction
 - Grid Systems: Block-Centered and Point-Centered (or Point-Distributed) Grids
 - > Types of Boundary Conditions:
 - Dirichlet Boundary Conditions
 - Neumann Boundary Conditions
- □ Incorporation of Boundary Conditions/Block-Centered Grid
 - Dirichlet Boundary Conditions

Introduction

Grid Systems: Block-Centered and Point-Centered (or Point-Distributed) Grids

Block-Centered and Point-Centered (or Point-Distributed) Grids

- The only difference between Point-Centered (or Point-Distributed) and Block-Centered Grids is in the treatment of boundary conditions.
 - Block-centered grid has its boundaries one-half grid block away from the exterior boundaries.
 - Point-centered (or point-distributed) grid has its boundaries coincident with the exterior boundaries of the system.

• Note that we do not need to consider equally spaced grid-points or gridblocks. Actually, it is more appropriate to use smaller grid spacing near the source/sink locations.

Types of Boundary Conditions

- Dirichlet Boundary Conditions
- Neumann Boundary Conditions

Dirichlet Boundary Conditions

• <u>Dirichlet Boundary Conditions</u>: pressure specified at the boundaries).

IC
$$p(x,0) = f(x) \ 0 \le x \le L$$
,
BC's $p(x = 0,t) = h(t) \ t > 0$,
BC's $p(x = L,t) = g(t) \ t > 0$,
Dirichlet
type boundary
 $x = 0$
 $x = L$

Neumann Boundary Conditions

• <u>Neumann Boundary Conditions</u>: pressure gradients specified at the boundaries.

IC
$$p(x,0) = f(x) \ 0 \le x \le L$$
,
BC $\frac{\partial p(x=0,t>0)}{\partial x} = C$
BC $\frac{\partial p(x=L_x,t>0)}{\partial x} = D$

Note : if C = 0 and/or D = 0, then we have no – flow (closed) boundary.

7

Applications of Finite Difference Approximation

The applications of finite difference approximations in this course will include the following modelling systems:

1. 1-D Block-Centered Grids:

- a. Dirichlet Boundary Conditions
- b. Neumann Boundary Conditions

2. 1-D Point-Centered Grids:

- a. Dirichlet Boundary Conditions
- b. Neumann Boundary Conditions

3. 2-D Systems:

- a. Block-Centered Grids
- b. Point-Centered Grids

4. Well modelling

5. Introduction to the Two-Phase Flow in a 1D Linear-Reservoir

Incorporation of Boundary Conditions/Block-Centered Grid

(Spatial discretization with Variable grid block sizes)

Dirichlet Boundary Conditions

Incorporation of Boundary Conditions/Block-Centered Grid

• <u>Dirichlet Boundary Conditions</u> (pressure specified at the boundaries). For generality consider a heterogeneous reservoir with sources/sinks.

PDE
$$1.127 \times 10^{-3} \frac{\partial}{\partial x} \left(\frac{k_x}{\mu} \frac{\partial p}{\partial x} \right) - \frac{q_{sc}(x,t)B}{V_b} = \frac{\phi c_t}{5.615} \frac{\partial p}{\partial t}, \ 0 < x < L_x, \ t > 0$$

For instance: IC $p(x,0) = 3000, 0 \le x \le L_x$,

BC
$$p(x=0, t>0) = 5000$$

BC
$$p(x = L_x, t > 0) = 3000$$

10

Incorporation of Boundary Conditions/Block-Centered Grid

• <u>Dirichlet Boundary Conditions</u> (pressure specified at the boundaries)

11

• General Implicit Difference Equation:

$$-T_{x,i-1/2}p_{i-1}^{n+1} + \left(T_{x,i+1/2} + T_{x,i-1/2} + \widetilde{V}_i\right)p_i^{n+1} - T_{x,i+1/2}p_{i+1}^{n+1} = -q_{sc,i}^{n+1}B + \widetilde{V}_ip_i^n$$

• For $i = 1$,
 $-T_{x,1/2}p_0^{n+1} + \left(T_{x,3/2} + T_{x,1/2} + \widetilde{V}_1\right)p_1^{n+1} - T_{x,3/2}p_2^{n+1} = -q_{sc,1}^{n+1}B + \widetilde{V}_1p_1^n$
 $T_{x,1/2} = 2 \times 1.127 \times 10^{-3} \frac{\lambda_{x,1/2}wh}{(\Delta x_1 + \Delta x_0)}$

Modify $T_{x,1/2}$ as :

$$\widetilde{T}_{x,1/2} = 1.127 \times 10^{-3} \frac{\lambda_{x,1/2} wh}{(x_1 - x_{1/2})}$$
$$= 2 \times 1.127 \times 10^{-3} \frac{\lambda_{x,1/2} wh}{\Delta x_1}$$

• For *i* = 1, with this modification we have:

$$-\widetilde{T}_{x,1/2}p_0^{n+1} + \left(T_{x,3/2} + \widetilde{T}_{x,1/2} + \widetilde{V}_1\right)p_1^{n+1} - T_{x,3/2}p_2^{n+1} = -q_{sc,1}^{n+1}B + \widetilde{V}_1p_1^n$$

Because p_0 is known (BC), then for i = 1,

$$\left(T_{x,3/2} + \widetilde{T}_{x,1/2} + \widetilde{V}_{1}\right)p_{1}^{n+1} - T_{x,3/2}p_{2}^{n+1} = -q_{sc,1}^{n+1}B + \widetilde{V}_{1}p_{1}^{n} + \widetilde{T}_{x,1/2}p_{0}^{n+1}$$

where we evaluate $\widetilde{T}_{x,1/2}$ from:

$$\widetilde{T}_{x,1/2} = 2 \times 1.127 \times 10^{-3} \frac{\lambda_{x,1/2} wh}{\Delta x_1}$$

• For $i = 2, 3, ..., N_x$ -1

$$-T_{x,i-1/2}p_{i-1}^{n+1} + \left(T_{x,i+1/2} + T_{x,i-1/2} + \widetilde{V}_i\right)p_i^{n+1} - T_{x,i+1/2}p_{i+1}^{n+1} = -q_{sc,i}^{n+1}B + \widetilde{V}_ip_i^n$$

where we evaluate *transmissibilities* from:

$$T_{x,i\mp 1/2} = 2 \times 1.127 \times 10^{-3} \frac{\lambda_{x,i\mp 1/2} wh}{\Delta x_i + \Delta x_{i\mp 1}}$$

• General Implicit Difference Equation:

$$-T_{x,i-1/2}p_{i-1}^{n+1} + (T_{x,i+1/2} + T_{x,i-1/2} + \widetilde{V}_i)p_i^{n+1} - T_{x,i+1/2}p_{i+1}^{n+1} = -q_{sc,i}^{n+1}B + \widetilde{V}_ip_i^n$$

• For $i = N_{x,s}$

$$-T_{x,N_x-1/2}p_{N_x-1}^{n+1} + (T_{x,N_x+1/2} + T_{x,N_x-1/2} + \widetilde{V}_{N_x})p_{N_x}^{n+1} - T_{x,N_x+1/2}p_{N_x+1}^{n+1} = -q_{sc,N_x}^{n+1}B + \widetilde{V}_{N_x}p_{N_x}^n$$

$$T_{x,N_x+1/2} = 2 \times 1.127 \times 10^{-3} \frac{\lambda_{x,Nx+1/2}wh}{(\Delta x_{N_x+1} + \Delta x_{N_x})}$$

Modify $T_{x,N_x+1/2}$ as:

$$\widetilde{T}_{x,N_x+1/2} = 1.127 \times 10^{-3} \frac{\lambda_{x,Nx+1/2}wh}{(\Delta x_{N_x})}$$

$$= 2 \times 1.127 \times 10^{-3} \frac{\lambda_{x,Nx+1/2}wh}{(\Delta x_{N_x})}$$

$$= 2 \times 1.127 \times 10^{-3} \frac{\lambda_{x,Nx+1/2}wh}{(\Delta x_{N_x})}$$

$$T_{x,N_x-1/2} = L_x$$

• For $i = N_x$, with this modification we have:

$$-T_{x,Nx-1/2}p_{Nx-1}^{n+1} + \left(\widetilde{T}_{x,Nx+1/2} + T_{x,Nx-1/2} + \widetilde{V}_{Nx}\right)p_{Nx}^{n+1} - \widetilde{T}_{x,Nx+1/2}p_{Nx+1}^{n+1} = -q_{sc,Nx}^{n+1}B + \widetilde{V}_{Nx}p_{Nx}^{n}$$

Because p_{Nx+1} is known (BC), then for $i = N_x$,

$$-T_{Nx-1/2}p_{Nx-1}^{n+1} + \left(\widetilde{T}_{x,Nx+1/2} + T_{x,Nx-1/2} + \widetilde{V}_{Nx}\right)p_{Nx}^{n+1} = -q_{sc,Nx}^{n+1}B + \widetilde{V}_{Nx}p_{Nx}^{n} + \widetilde{T}_{x,Nx+1/2}p_{Nx+1/2}^{n+1}$$

where we evaluate $\widetilde{T}_{x,Nx+1/2}$ from:

$$\widetilde{T}_{x,Nx+1/2} = 2 \times 1.127 \times 10^{-3} \frac{\lambda_{x,Nx+1/2} wh}{\Delta x_{Nx}}$$

Summary

- It has been presented two types of grid systems: Block-Centered and Point-Centered (or Point-Distributed) Grids.
- The only difference between Point-Centered and Block-Centered Grids is in the treatment of boundary conditions.
- There are two types of boundary conditions: Dirichlet Boundary Conditions and Neumann Boundary Conditions.
- Dirichlet Boundary Conditions: pressure specified at the boundaries.
- Neumann Boundary Conditions: pressure gradients specified at the boundaries.

Exercise

After discretization of the following PDE by implicit finite difference with the initial and boundary conditions shown below, write a generalized matrix-vector form ($A\vec{p}^{n+1} = \vec{d}^n$) for this problem.

PDE
$$1.127 \times 10^{-3} \frac{\partial}{\partial x} \left(\frac{k_x}{\mu} \frac{\partial p}{\partial x} \right) - \frac{q_{sc}(x,t)B}{V_b} = \frac{\phi c_t}{5.615} \frac{\partial p}{\partial t}, \ 0 < x < L_x, t > 0$$

IC
$$p(x,0) = P_0, 0 \le x \le L_x,$$

BC $p(x=0,t>0) = P_0$

BC
$$p(x = L_x, t > 0) = P_L$$

THANK YOU