Al-Ayen University College of Petroleum Engineering

Numerical Methods and Reservoir Simulation

Lecturer: Dr. Mohammed Idrees Al-Mossawy
2020/2021

L14: (1) Introduction to Grid Systems \& Boundary Conditions
(2) Incorporation of Dirichlet Boundary Conditions to Block-Centered Grids

Outline

- Introduction
$>$ Grid Systems: Block-Centered and Point-Centered (or Point-Distributed) Grids
> Types of Boundary Conditions:
* Dirichlet Boundary Conditions
* Neumann Boundary Conditions
\square Incorporation of Boundary Conditions/Block-Centered Grid
$>$ Dirichlet Boundary Conditions

Introduction

Grid Systems: Block-Centered and
Point-Centered (or Point-Distributed) Grids

Block-Centered and Point-Centered (or Point-Distributed) Grids

- The only difference between Point-Centered (or Point-Distributed) and Block-Centered Grids is in the treatment of boundary conditions.
- Block-centered grid has its boundaries one-half grid block away from the exterior boundaries.
- Point-centered (or point-distributed) grid has its boundaries coincident with the exterior boundaries of the system.

Block-Centered

Point-Centered

- Note that we do not need to consider equally spaced grid-points or gridblocks. Actually, it is more appropriate to use smaller grid spacing near the source/sink locations.

Types of Boundary Conditions

- Dirichlet Boundary Conditions
- Neumann Boundary Conditions

Dirichlet Boundary Conditions

- Dirichlet Boundary Conditions: pressure specified at the boundaries).

IC $p(x, 0)=f(x) 0 \leq x \leq L$,
BC 's $\quad p(x=0, t)=h(t) t>0$,
BC 's $p(x=L, t)=g(t) t>0$,

Neumann Boundary Conditions

- Neumann Boundary Conditions: pressure gradients specified at the boundaries.
IC $p(x, 0)=f(x) 0 \leq x \leq L$,
$\mathrm{BC} \frac{\partial p(x=0, t>0)}{\partial x}=C$
$\mathrm{BC} \frac{\partial p\left(x=L_{x}, t>0\right)}{\partial x}=D$
Note : if $\mathrm{C}=0 \mathrm{and} /$ or $\mathrm{D}=0$, then we have no - flow (closed) boundary.

Applications of Finite Difference Approximation

The applications of finite difference approximations in this course will include the following modelling systems:

1. 1-D Block-Centered Grids:
a. Dirichlet Boundary Conditions
b. Neumann Boundary Conditions
2. 1-D Point-Centered Grids:
a. Dirichlet Boundary Conditions
b. Neumann Boundary Conditions
3. 2-D Systems:
a. Block-Centered Grids
b. Point-Centered Grids
4. Well modelling
5. Introduction to the Two-Phase Flow in a 1D Linear-Reservoir

Incorporation of Boundary Conditions/Block-Centered Grid

(Spatial discretization with Variable grid block sizes)

Dirichlet Boundary Conditions

Incorporation of Boundary Conditions/Block-Centered Grid

- Dirichlet Boundary Conditions (pressure specified at the boundaries). For generality consider a heterogeneous reservoir with sources/sinks.

$$
\text { PDE } 1.127 \times 10^{-3} \frac{\partial}{\partial x}\left(\frac{k_{x}}{\mu} \frac{\partial p}{\partial x}\right)-\frac{q_{s c}(x, t) B}{V_{b}}=\frac{\phi c_{t}}{5.615} \frac{\partial p}{\partial t}, 0<x<L_{x}, t>0
$$

For instance:
IC $p(x, 0)=3000,0 \leq x \leq L_{x}$,

BC $p(x=0, t>0)=5000$

BC $p\left(x=L_{x}, t>0\right)=3000$

Incorporation of Boundary Conditions/Block-Centered Grid

- Dirichlet Boundary Conditions (pressure specified at the boundaries)

- General Implicit Difference Equation:

$$
-T_{x, i-1 / 2} p_{i-1}^{n+1}+\left(T_{x, i+1 / 2}+T_{x, i-1 / 2}+\widetilde{V}_{i}\right) p_{i}^{n+1}-T_{x, i+1 / 2} p_{i+1}^{n+1}=-q_{s c, i}^{n+1} B+\widetilde{V}_{i} p_{i}^{n}
$$

- For $i=1$,

$$
\begin{aligned}
& -T_{x, 1 / 2} p_{0}^{n+1}+\left(T_{x, 3 / 2}+T_{x, 1 / 2}+\widetilde{V}_{1}\right) p_{1}^{n+1}-T_{x, 3 / 2} p_{2}^{n+1}=-q_{s c, 1}^{n+1} B+\widetilde{V}_{1} p_{1}^{n} \\
& \quad T_{x, 1 / 2}=2 \times 1.127 \times 10^{-3} \frac{\lambda_{x, 1 / 2} w h}{\left(\Delta x_{1}+\Delta x_{0}\right)}
\end{aligned}
$$

Modify $T_{x, 1 / 2}$ as :

$$
\begin{aligned}
\widetilde{T}_{x, 1 / 2} & =1.127 \times 10^{-3} \frac{\lambda_{x, 1 / 2} w h}{\left(x_{1}-x_{1 / 2}\right)} \\
& =2 \times 1.127 \times 10^{-3} \frac{\lambda_{x, 1 / 2} w h}{\Delta x_{1}}
\end{aligned}
$$

- For $i=1$, with this modification we have:

$$
-\widetilde{T}_{x, 1 / 2} p_{0}^{n+1}+\left(T_{x, 3 / 2}+\widetilde{T}_{x, 1 / 2}+\widetilde{V}_{1}\right) p_{1}^{n+1}-T_{x, 3 / 2} p_{2}^{n+1}=-q_{s c, 1}^{n+1} B+\widetilde{V}_{1} p_{1}^{n}
$$

Because p_{0} is known (BC), then for $i=1$,

$$
\left(T_{x, 3 / 2}+\widetilde{T}_{x, 1 / 2}+\widetilde{V}_{1}\right) p_{1}^{n+1}-T_{x, 3 / 2} p_{2}^{n+1}=-q_{s c, 1}^{n+1} B+\widetilde{V}_{1} p_{1}^{n}+\widetilde{T}_{x, 1 / 2} p_{0}^{n+1}
$$

where we evaluate $\widetilde{T}_{x, 1 / 2}$ from:

$$
\widetilde{T}_{x, 1 / 2}=2 \times 1.127 \times 10^{-3} \frac{\lambda_{x, 1 / 2} w h}{\Delta x_{1}}
$$

- For $i=2,3, \ldots, N_{x}-1$

$$
\left(-T_{x, i-1 / 2} p_{i-1}^{n+1}+\left(T_{x, i+1 / 2}+T_{x, i-1 / 2}+\widetilde{V}_{i}\right) p_{i}^{n+1}-T_{x, i+1 / 2} p_{i+1}^{n+1}=-q_{s, i}^{n+1} B+\widetilde{V}_{i} p_{i}^{n}\right.
$$

where we evaluate transmissibilities from:

$$
T_{x, i \neq 1 / 2}=2 \times 1.127 \times 10^{-3} \frac{\lambda_{x, i \mp 1 / 2} w h}{\Delta x_{i}+\Delta x_{i \neq 1}}
$$

- General Implicit Difference Equation:

$$
-T_{x, i-1 / 2} p_{i-1}^{n+1}+\left(T_{x, i+1 / 2}+T_{x, i-1 / 2}+\widetilde{V}_{i}\right) p_{i}^{n+1}-T_{x, i+1 / 2} p_{i+1}^{n+1}=-q_{s c, i}^{n+1} B+\widetilde{V}_{i} p_{i}^{n}
$$

- For $i=N_{x}$,

$$
\begin{array}{r}
-T_{x, N_{x}-1 / 2} p_{N_{x}-1}^{n+1}+\left(T_{x, N_{x}+1 / 2}+T_{x, N_{x}-1 / 2}+\widetilde{V}_{N_{x}}\right) p_{N_{x}}^{n+1}-T_{x, N_{x}+1 / 2} p_{N_{x}+1}^{n+1}=-q_{s c, N_{x}}^{n+1} B+\widetilde{V}_{N_{x}} p_{N_{x}}^{n} \\
T_{x, N_{x}+1 / 2}=2 \times 1.127 \times 10^{-3} \frac{\lambda_{x, N_{x}+1 / 2} w h}{\left(\Delta x_{N_{x}+1}+\Delta x_{N_{x}}\right)} \quad p_{\mathrm{Nx}+1}=p_{N x+1 / 2}=3000
\end{array}
$$

Modify $T_{x, N_{x+1 / 2}}$ as :

$$
\begin{aligned}
\widetilde{T}_{x, N_{x}+1 / 2} & =1.127 \times 10^{-3} \frac{\lambda_{x, N_{x}+1 / 2} w h}{\left(x_{N_{x}+1 / 2}-x_{N_{x}}\right)} \\
& =2 \times 1.127 \times 10^{-3} \frac{\lambda_{x, N_{x}+1 / 2} w h}{\Delta x_{N_{x}}}
\end{aligned}
$$

- For $i=N_{x}$, with this modification we have:
$-T_{x, N_{x}-1 / 2} p_{N_{x}-1}^{n+1}+\left(\widetilde{T}_{x, N_{x+1} / 2}+T_{x, N_{x-1 / 2}}+\widetilde{V}_{N_{x}}\right) p_{N_{x}}^{n+1}-\widetilde{x}_{x, N_{x}+1 / 2} p_{N_{x+1}}^{n+1}=-q_{s c, N_{x}}^{n+1} B+\widetilde{V}_{N_{x}} p_{N_{x}}^{n}$
Because $p_{N x+1}$ is known (BC), then for $i=N_{x}$,
$-T_{N x-1 / 2} \sum_{x x-1}^{n+1}+\left(\widetilde{T}_{x, N x+1 / 2}+T_{x, N_{x-1 / 2}}+\widetilde{V}_{N_{x}}\right)_{N x}^{n+1}=-q_{x, N_{x}}^{n+1} B+\widetilde{V}_{N_{x}} p_{N x}^{n}+\widetilde{T}_{x, N_{x+1 / 2}} \sum_{N x+1}^{n+1}$
where we evaluate $\widetilde{x}_{x, N_{x+1} / 2}$ from:

$$
\widetilde{T}_{x, N_{x+1 / 2}}=2 \times 1.127 \times 10^{-3} \frac{\lambda_{x, N_{x+1 / 2}} w h}{\Delta x_{N x}}
$$

Summary

- It has been presented two types of grid systems: Block-Centered and PointCentered (or Point-Distributed) Grids.
- The only difference between Point-Centered and Block-Centered Grids is in the treatment of boundary conditions.
- There are two types of boundary conditions: Dirichlet Boundary Conditions and Neumann Boundary Conditions.
- Dirichlet Boundary Conditions: pressure specified at the boundaries.
- Neumann Boundary Conditions: pressure gradients specified at the boundaries.

Exercise

After discretization of the following PDE by implicit finite difference with the initial and boundary conditions shown below, write a generalized matrix-vector form ($A \vec{p}^{n+1}=\vec{d}^{n}$) for this problem.
$\operatorname{PDE} 1.127 \times 10^{-3} \frac{\partial}{\partial x}\left(\frac{k_{x}}{\mu} \frac{\partial p}{\partial x}\right)-\frac{q_{s c}(x, t) B}{V_{b}}=\frac{\phi c_{t}}{5.615} \frac{\partial p}{\partial t}, 0<x<L_{x}, t>0$

IC $p(x, 0)=P_{0}, 0 \leq x \leq L_{x}$,
BC $p(x=0, t>0)=P_{0}$

BC $p\left(x=L_{x}, t>0\right)=P_{L}$

THANK YOU

