MEC

Thermodynamics

Closed System First Law of a Cycle

Some thermodynamic cycle composes of processes in which the working fluid undergoes a series of state changes such that the final and initial states are identical.

For such system the change in internal energy of the working fluid is zero.

* The first law for a closed system operating in a thermodynamic cycle becomes

$$
\begin{aligned}
Q_{n e t}-W_{n e t} & =\Delta U_{c y c l e} \\
Q_{n e t} & =W_{\text {net }}
\end{aligned}
$$

Boundary Works

According to a law of $P V^{n}=$ constant

No	Value of n	Process	Description	Result of IGL
1	∞	isochoric	constant volume $\left(\mathrm{V}_{1}=\mathrm{V}_{2}\right)$	$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$
2	0	isobaric	constant pressure $\left(\mathrm{P}_{1}=\mathrm{P}_{2}\right)$	$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
3	1	isothermal	constant temperature $\left(\mathrm{T}_{1}=\mathrm{T}_{2}\right)$	$P_{1} V_{1}=P_{2} V_{2}$
4	$1<\mathrm{n}<\gamma$	polytropic	-none-	$\frac{P_{1}}{P_{2}}=\left(\frac{V_{2}}{V_{1}}\right)^{n}=\left(\frac{T_{1}}{T_{2}}\right)^{\frac{n}{n-1}}$
5	γ	isentropic	constant entropy $\left(\mathrm{S}_{1}=\mathrm{S}_{2}\right)$	P_{2}

V Various forms of work are expressed as follows

Process	Boundary Work
isochoric	$W_{12}=P\left(V_{2}-V_{1}\right)=0$
isobaric	$W_{12}=P\left(V_{2}-V_{1}\right)$
iso thermal	$W_{12}=P_{1} V_{1} \ln \frac{V_{2}}{V_{1}}$
polytropic	$W_{12}=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n}$
isentropic	

Example 3.4

Sketch a P-V diagram showing the following processes in a cycle

Process 1-2: isobaric work output of 10.5 kJ from an initial volume of 0.028 m^{3} and pressure 1.4 bar,
Process 2-3: isothermal compression, and
Process 3-1: isochoric heat transfer to its original volume of $0.028 \mathrm{~m}^{3}$ and pressure 1.4 bar.

Calculate (a) the maximum volume in the cycle, in m^{3}, (b) the isothermal work, in kJ , (c) the net work, in kJ , and (d) the heat transfer during isobaric expansion, in kJ .

Solution:

* Process by process analysis,
Section 1-2(isobaric)

$$
W_{12}=P\left(V_{2}-V_{1}\right)=10.5
$$

$$
140\left(V_{2}-0.028\right)=10.5
$$

$$
V_{2}=\underline{\underline{0.103 m^{3}}}
$$

The isothermal work

Section2-3(isothermal)

$$
\begin{aligned}
& P_{2} V_{2}=P_{3} V_{3} \\
& P_{3}=\left(\frac{0.103}{0.028}\right)(140)=515 \mathrm{kPa} \\
& \rightarrow W_{23}=P_{2} V_{2} \ln \frac{V_{3}}{V_{2}} \\
& \quad=140(0.103) \ln \left(\frac{0.028}{0.103}\right) \\
& \quad=\underline{\underline{-18.78 \mathrm{~kJ}}}
\end{aligned}
$$

The net work

$$
\begin{aligned}
& \text { Section } 3-1 \text { (isochoric) } \\
& \begin{array}{l}
W_{31}=0 \\
\therefore W_{\text {net }} \\
=W_{12}+W_{23}+W_{31} \\
\quad=10.5-18.78 \\
\quad=-8.28 \mathrm{~kJ}
\end{array}
\end{aligned}
$$

Example 3.5

A fluid at 4.15 bar is expanded reversibly according to a law $\mathrm{PV}=$ constant to a pressure of 1.15 bar until it has a specific volume of $0.12 \mathrm{~m}^{3} / \mathrm{kg}$. It is then cooled reversibly at a constant pressure, then is cooled at constant volume until the pressure is 0.62 bar ; and is then allowed to compress reversibly according to a law $P V^{n}=$ constant back to the initial conditions. The work done in the constant pressure is 0.525 kJ , and the mass of fluid present is 0.22 kg . Calculate the value of n in the fourth process, the net work of the cycle and sketch the cycle on a P-V diagram.

Solution:

* Process by process analysis,

$$
\begin{aligned}
& \text { Section } 1-2(\text { isothermal }) \\
& \begin{aligned}
P_{1} V_{1} & =P_{2} V_{2} \\
V_{1} & =\left(\frac{115}{415}\right) 0.22(0.12) \\
& =0.00732 \mathrm{~m}^{3} \\
W_{12} & =P_{1} V_{1} \ln \frac{V_{2}}{V_{1}} \\
& =415(0.00732) \ln \frac{0.0264}{0.00732} \\
& =3.895 \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Section } 2-3(\text { isobaric }) \\
& W_{23}=P\left(V_{3}-V_{2}\right)=0.525 \mathrm{~kJ} \\
& V_{3}=\frac{0.525}{115}+0.0264 \\
& \quad=0.03097 \mathrm{~m}^{3}
\end{aligned}
$$

Section 3-4(isochoric)

$$
W_{34}=0
$$

Section 4-1 (PolytroPic)

$$
\begin{aligned}
& \frac{P_{4}}{P_{1}}=\left(\frac{V_{1}}{V_{4}}\right)^{n} \\
& \frac{62}{415}=\left(\frac{0.00732}{0.03097}\right)^{n} \\
& \ln 0.1494=n \ln 0.2364 \\
& n=\underline{\underline{1.3182}}
\end{aligned}
$$

$$
W_{41}=\frac{P_{1} V_{1}-P_{4} V_{4}}{1-n}
$$

$$
=\frac{415(0.0072)-62(0.03097)}{1-1.3182}
$$

$$
=-3.5124 k J
$$

The net work of the cycle

$$
\begin{aligned}
W_{\text {net }} & =W_{12}+W_{23}+W_{34}+W_{41} \\
& =0.9076 \mathrm{~kJ}
\end{aligned}
$$

Supplementary Problems 2

1. A mass of 0.15 kg of air is initially exists at 2 MPa and $350^{\circ} \mathrm{C}$. The air is first expanded isothermally to 500 kPa , then compressed polytropically with a polytropic exponent of 1.2 to the initial state. Determine the boundary work for each process and the net work of the cycle.
2. 0.078 kg of a carbon monoxide initially exists at 130 kPa and $120^{\circ} \mathrm{C}$. The gas is then expanded polytropically to a state of 100 kPa and $100^{\circ} \mathrm{C}$. Sketch the P-V diagram for this process. Also determine the value of n (index) and the boundary work done during this process.
[1.248, 1.855 kJ$]$
3. Two kg of air experiences the threeprocess cycle shown in Fig. 3-14. Calculate the net work.

Fig. 3-14
4. A system contains $0.15 \mathrm{~m}^{3}$ of air pressure of 3.8 bars and $150^{\circ} \mathrm{C}$. It is expanded adiabatically till the pressure falls to 1.0 bar. The air is then heated at a constant pressure till its enthalpy increases by 70 kJ . Sketch the process on a P-V diagram and determine the total work done.

Use $\mathrm{c}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$ and $\mathrm{c}_{\mathrm{v}}=0.714 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$

