Introduction to direct current (dc) machines fundamentals

- •DC machines are generators that convert mechanical energy to DC electric energy and motors that convert DC electric energy to mechanical energy. *Generator action*: An emf (voltage) is induced in a conductor if it moves through a magnetic field.
- DC motors are used in a wide variety of industrial drives such as robots, machine tools, paper and steel mills. *Motor action*: A force is induced in a conductor that has a current going through it and placed in a magnetic field
- DC generators are quite rare in modern power systems. They are being replaced by solid-state devices that convert available AC power to DC power for DC drive systems and other DC applications.
- Any DC machine can act either as a generator or as a motor.

DC Machine Working Principle

DC Machine Working Principle

DC Generator Fundamentals

When a conductor of length l is moving at a velocity v to the right in a magnetic field of density \mathbf{B} , according to Faraday's Law of Electromagnetic Induction, an emf \mathbf{e}_{ind} will be induced.

$$e_{ind} = (B \times v). l$$

e = induced voltage, v = velocity of the conductor, B = flux density and <math>l is the length of the conductor.

= Bvl sina cos\beta

 α - angle between the direction in which the conductor is moving and the flux is acting.

 β - smallest possible angle the conductor makes with the direction of, the vector product, $(v \times B)$ and for maximum induction, $\beta = 0$. Hence, e = Blv for most cases. $(v \times B)$ indicates the direction of the current flow in the conductor, or the polarity of the emf.

Generated Voltage in a Loop (a coil of one turn)

For emf to be induced, the conductors must cut the flux lines as they move. Otherwise, $(v \times B) = 0$.

$$e_{loop} = e_{ab} + e_{bc} + e_{cd} + e_{da}$$

$$e_{loop} = Blv + 0 + Blv + 0$$

$$e_{loop} = 2 B l v$$

Real DC machine Construction

Stator: Stationary part of the machine. The stator carries a field winding that is used to produce the required magnetic field by DC excitation.

Often know as the field.

Rotor: The rotor is the rotating part of the machine. The rotor carries a distributed winding, and is the winding where the emf is induced. Also known as the armature.

Dc motor stator construction

DC machine Construction

Field poles -

The picture shows the stator of a large DC machine with several poles.

The iron core is supported by a cast iron frame.

Generated EMF in a Real DC Machine

$$E_G = \frac{ZP}{60a} \phi n = k_g \phi n = \frac{ZP}{2\Pi a} \phi \omega = k_m \phi \omega$$

Where

Z = total number of conductors, P = total number of poles.

a = P for lap winding, a = 2 for wave winding, $\phi = flux$,

 ω = speed in rad/s and n = speed in rpm.

DC Motor Fundamentals

$$F = (l \times B) i$$

F = induced force, B = flux density, I is the current passing in the conductor and I is the length of the conductor.

l is a vector in the direction of the flow of the current.

(1 x B) Direction indicates the direction of force

Counter EMF

When the motor is running, internally generated emf, $(\mathbf{E_G} = \mathbf{E_C})$ opposes the applied voltage, thus:

$$I_A = \frac{V_T - E_C}{R_A}$$

Where: V_T = terminal voltage, E_c = counter EMF, R_A is the armature resistance and I_A is the armature current

The relationship between the induced EMF and torque

$$E_{conductor} = B\ell v$$
 $T_{conductor} = B\ell ir$
 $therefore,$
 $\frac{E}{T} = \frac{B\ell v}{B\ell ir} = \frac{v}{ir}, v = \omega r$
 $\frac{E}{T} = \frac{\omega}{i}$
 $Ei = \underline{T}\omega$
 $electric mechanical$

power power

$$T = \frac{EI}{\omega} = \frac{ZP}{2\pi a} \phi I_A$$

$$T = k_m \phi I_A$$

Where: T is the torque,

Example:

A six-pole DC machine has a flux per pole of 30 mWb. The armature has 536 conductors connected as a lap winding. The DC machine runs at 1050 rpm and it delivers a rated armature current of 225 A to a load connected to its terminals, calculate:

- (a) Machine constant, K_m (b) Generated voltage, E_G (c) Conductor current
- (d) Electromagnetic torque. (e) Power delivered by the machine.

a)
$$k_m = \frac{ZP}{2\pi a} = \frac{6*536}{2\pi*6} = 85.31$$

b)
$$\omega = \frac{2\pi n}{60} = \frac{2\pi * 1050}{60} = 109.96 \text{ rad/s}$$

$$E_G = k_m \phi \omega = 85.31 * 0.03 * 109.96 = 281.4 \text{ V}$$

c) Since it is lap winding :

$$I(conductor) = \frac{I_a}{a} = \frac{225}{6} = 37.5A$$

d)
$$T = k_m \phi I_\alpha = 85.31 * 0.03 * 225 = 575.84 N.m$$

e)
$$P = T \omega = E_{\alpha} I_{\alpha} = 63.32 \text{ kW}$$