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Unsteady-State Flow
Solution of the Diffusivity Equation

Radial Flow of the Compressible Fluids
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Imposing the constant-rate condition as one of the boundary conditions, it has been shown that the exact
solution to this equation is:
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The Pressure-Approximation Method

The second method of approximation (the first approximation was the Pressure-Squared Method) to the
exact solution of the radial flow of gases is to treat the gas as a pseudoliquid.
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Recalling the gas formation volume factor Bg as expressed in bbl/scf is given by: Bg= (ﬁ) (F)
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The difference in the real gas pseudopressure is given by: m(p;) — (Pwt) = | —dp
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Combining the above two expressions gives: m(p;) — M(pys) = _“Pse [ dp
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m(p;) —m(pys) = (P; — Pwt)

« Combining with Equations of the exact solution gives:

162.5%10°Q, I B, ;
Pwt =Pi— : Q: L = lOg _l:t 2 -3.23
kh OUT, ry

or

162.5 (10°)Q, I B, 4t
Pwi =Pi—| — — || log| ——
kh Y

or equivalently in terms of dimensionless pressure drop:
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where Q, = gas flow rate, Msct/day
k = permeability, md
B, = gas formation volume factor, bbl/scf
t= time, hr
pp = dimensionless pressure drop

tp = dimensionless time

It should be noted that the gas properties, i.e., W, B,, and ¢, are evaluated

at pressure p as defined below:
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« Again, this method is only limited to applications above 3000 psi.

«  When solving for pwr, it might be sufficient to evaluate the gas properties at pi.




Example

A gas well with a wellbore radius of 0.3 ft is producing at a constant flow rate of 2000 Mscf/day under transient flow
conditions. The initial reservoir pressure (shut-in pressure) is 4400 psia at 140°F. The formation permeability and
thickness are 65 md and 15 ft, respectively. The porosity is recorded as 15%. It is given that at the initial reservoir
pressure: p= 0.02831 cp, z= 0.896 and the initial total isothermal compressibility is 0.0003 1/psi. Calculate the

bottom-hole flowing pressure after 1.5 hours.

Solution
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(0.000264)(65)(1.5)
(0.15)(0.02831)(3 x 107*) (0.3%)

tp = —224.498.6

Since to> 100, the pp can be calculated by applying Equation: pp=0.5]In (ip) +0.80907]

pp =0.5] In(224498.6) +0.80907] = 6.565
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B, = 0.00503 =0.000615 bbl/scf
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_ 6.565
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Pus = 4400 {

Pwt = 4367 psia
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