Al-Ayen University College of Petroleum Engineering

Reservoir Engineering II

Lecturer: Dr. Mohammed Idrees Al-Mossawy

$$
2020 / 2021
$$

Lecture 10: Unsteady-State Flow of Reservoir Fluids (Part 4),
Ref.: Reservoir Engineering Handbook by Tarek Ahmed

Outlines

* Unsteady-State Flow
\square Solution of the Diffusivity Equation
> Radial Flow of the Compressible Fluids
\checkmark The Pressure-Approximation Method
* Example

Unsteady-State Flow

Solution of the Diffusivity Equation

Radial Flow of the Compressible Fluids

$\frac{\partial^{2} \mathrm{~m}(\mathrm{p})}{\partial \mathrm{r}^{2}}+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{m}(\mathrm{p})}{\partial \mathrm{r}}=\frac{\phi \mu \mathrm{c}_{\mathrm{t}}}{0.000264 \mathrm{k}} \frac{\partial \mathrm{m}(\mathrm{p})}{\partial \mathrm{t}} \leftrightarrow \begin{aligned} & \text { The radial diffusivity equation } \\ & \text { for compressible fluids }\end{aligned}$
Imposing the constant-rate condition as one of the boundary conditions, it has been shown that the exact solution to this equation is:

$$
\begin{array}{l|l}
\mathrm{m}\left(\mathrm{p}_{\mathrm{wf}}\right)=\mathrm{m}\left(\mathrm{p}_{\mathrm{i}}\right)-\left(\frac{1637 \mathrm{Q}_{\mathrm{g}} \mathrm{~T}}{\mathrm{kh}}\right)\left[\log \left(\frac{\mathrm{kt}}{\phi \mu_{\mathrm{i}} \mathrm{c}_{\mathrm{ti}} \mathrm{r}_{\mathrm{w}}^{2}}\right)-3.23\right] & \mathrm{t}_{\mathrm{D}}=\frac{0.000264 \mathrm{kt}}{\phi \mu_{\mathrm{i}} \mathrm{c}_{\mathrm{ti}} \mathrm{r}_{\mathrm{w}}^{2}} \\
\text { In terms of the dimensionless time } \mathrm{t}_{\mathrm{D}} \text { as: } & \gamma=\mathrm{e}^{0.5772}=1.781
\end{array}
$$

$m\left(p_{w f}\right)=m\left(p_{i}\right)-\left(\frac{1637 Q_{g} T}{k h}\right)\left[\log \left(\frac{4 t_{D}}{\gamma}\right)\right]$

The Pressure-Approximation Method

- The second method of approximation (the first approximation was the Pressure-Squared Method) to the exact solution of the radial flow of gases is to treat the gas as a pseudoliquid.
- Recalling the gas formation volume factor $B g$ as expressed in bbl/scf is given by: $\quad B_{g}=\left(\frac{p_{s c}}{5.615 T_{s c}}\right)\left(\frac{\mathrm{zT}}{\mathrm{p}}\right)$
- Solving the above expression for p / z gives: $\frac{\mathrm{p}}{\mathrm{z}}=\left(\frac{\mathrm{Tp}_{\mathrm{sc}}}{5.615 \mathrm{~T}_{\mathrm{sc}}}\right)\left(\frac{1}{\mathrm{~B}_{\mathrm{g}}}\right)$
- The difference in the real gas pseudopressure is given by: $\mathrm{m}\left(\mathrm{p}_{\mathrm{i}}\right)-\left(\mathrm{p}_{\mathrm{wf}}\right)=\int_{\mathrm{p}_{\mathrm{wf}}}^{\mathrm{P}_{\mathrm{i}}} \frac{2 \mathrm{p}}{\mu \mathrm{z}} \mathrm{dp}$
- Combining the above two expressions gives:

$$
\mathrm{m}\left(\mathrm{p}_{\mathrm{i}}\right)-\mathrm{m}\left(\mathrm{p}_{\mathrm{wf}}\right)=\frac{2 \mathrm{Tp}_{\mathrm{sc}}}{5.615 \mathrm{~T}_{\mathrm{sc}}} \int_{\mathrm{p}_{\mathrm{wf}}}^{\mathrm{p}_{\mathrm{i}}}\left(\frac{1}{\mu \mathrm{~B}_{\mathrm{g}}}\right) \mathrm{dp}
$$

$\mathrm{m}\left(\mathrm{p}_{\mathrm{i}}\right)-\mathrm{m}\left(\mathrm{p}_{\mathrm{wf}}\right)=\frac{2 \mathrm{Tp}_{\mathrm{sc}}}{5.615 \mathrm{~T}_{\mathrm{sc}}} \int_{\mathrm{p}_{\mathrm{wf}}}^{\mathrm{p}_{\mathrm{i}}}\left(\frac{1}{\mu \mathrm{~B}}\right) \mathrm{B} \quad \mathrm{p}$

- Fetkovich (1973) suggested that at high pressures ($p>3000$), $1 / \mu B_{g}$ is nearly constant.
- Imposing Fetkovich's condition on the above equation and integrating gives:

$$
\mathrm{m}\left(\mathrm{p}_{\mathrm{i}}\right)-\mathrm{m}\left(\mathrm{p}_{\mathrm{wf}}\right)=\frac{2 \mathrm{Tp}_{\mathrm{sc}}}{5.615 \mathrm{~T}_{\mathrm{sc}} \bar{\mu} \overline{\mathrm{~B}}_{\mathrm{g}}}\left(\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{wf}}\right)
$$

$1 /\left(\mu_{g} \mathrm{Bg}\right)$ vs. pressure

$$
\mathrm{m}\left(\mathrm{p}_{\mathrm{i}}\right)-\mathrm{m}\left(\mathrm{p}_{\mathrm{wf}}\right)=\frac{2 \mathrm{Tp}_{\mathrm{sc}}}{5.615 \mathrm{~T}_{\mathrm{sc}} \bar{\mu} \overline{\mathrm{~B}}_{\mathrm{g}}}\left(\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{wf}}\right)
$$

- Combining with Equations of the exact solution gives:

$$
\mathrm{p}_{\mathrm{wf}}=\mathrm{p}_{\mathrm{i}}-\left(\frac{162.5 \times 10^{3} \mathrm{Q}_{\mathrm{g}} \bar{\mu} \overline{\mathrm{~B}}_{\mathrm{g}}}{\mathrm{kh}}\right)\left[\log \left(\frac{\mathrm{kt}}{\phi \bar{\mu}_{\mathrm{t}} \mathrm{r}_{\mathrm{w}}^{2}}\right)-3.23\right]
$$

$$
\mathrm{p}_{\mathrm{wf}}=\mathrm{p}_{\mathrm{i}}-\left(\frac{162.5\left(10^{3}\right) \mathrm{Q}_{\mathrm{g}} \bar{\mu}_{\mathrm{B}}^{\mathrm{g}}}{\mathrm{kh}}\right)\left[\log \left(\frac{4 \mathrm{t}_{\mathrm{D}}}{\gamma}\right)\right]
$$

or equivalently in terms of dimensionless pressure drop:

$$
\mathrm{p}_{\mathrm{wf}}=\mathrm{p}_{\mathrm{i}}-\left(\frac{141.2\left(10^{3}\right) \mathrm{Q}_{\mathrm{g}} \bar{\mu} \overline{\mathrm{~B}}_{\mathrm{g}}}{\mathrm{kh}}\right) \mathrm{p}_{\mathrm{D}}
$$

It should be noted that the gas properties, i.e., μ, B_{g}, and c_{t}, are evaluated at pressure $\overline{\mathrm{p}}$ as defined below:
$\overline{\mathrm{p}}=\frac{\mathrm{p}_{\mathrm{i}}+\mathrm{p}_{\mathrm{wf}}}{2}$

- Again, this method is only limited to applications above 3000 psi.
- When solving for pwf, it might be sufficient to evaluate the gas properties at pi.

Example

A gas well with a wellbore radius of 0.3 ft is producing at a constant flow rate of 2000 Mscf /day under transient flow conditions. The initial reservoir pressure (shut-in pressure) is 4400 psia at $140^{\circ} \mathrm{F}$. The formation permeability and thickness are 65 md and 15 ft , respectively. The porosity is recorded as 15%. It is given that at the initial reservoir pressure: $\mu=0.02831 \mathrm{cp}, \mathrm{z}=0.896$ and the initial total isothermal compressibility is $0.00031 / \mathrm{psi}$. Calculate the bottom-hole flowing pressure after 1.5 hours.

Solution
$\mathrm{t}_{\mathrm{D}}=\frac{0.000264 \mathrm{kt}}{\phi \mu \mathrm{c}_{\mathrm{t}} \mathrm{r}_{\mathrm{w}}^{2}}$
$\mathrm{t}_{\mathrm{D}}=\frac{(0.000264)(65)(1.5)}{(0.15)(0.02831)\left(3 \times 10^{-4}\right)\left(0.3^{2}\right)}=224,498.6$
Since $t_{0}>100$, the p_{D} can be calculated by applying Equation: $p_{D}=0.5\left[\ln \left(t_{D}\right)+0.80907\right]$
$p_{D}=0.5[\ln (224498.6)+0.80907]=6.565$

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{g}}=\left(\frac{\mathrm{p}_{\mathrm{sc}}}{5.615 \mathrm{~T}_{\mathrm{sc}}}\right)\left(\frac{\mathrm{zT}}{\mathrm{p}}\right)=0.00503\left(\frac{\mathrm{zT}}{\mathrm{p}}\right) \\
& \mathrm{B}_{\mathrm{g}}=0.00503 \frac{(0.896)(600)}{4400}=0.000615 \mathrm{bbl} / \mathrm{scf} \\
& \mathrm{p}_{\mathrm{wf}}=\mathrm{p}_{\mathrm{i}}-\left(\frac{141.2\left(10^{3}\right) \mathrm{Q}_{\mathrm{g}} \bar{\mu} \overline{\mathrm{~B}}_{\mathrm{g}}}{\mathrm{kh}}\right) \mathrm{p}_{\mathrm{D}} \\
& \mathrm{p}_{\mathrm{wf}}=4400-\left[\frac{141.2 \times 10^{3}(2000)(0.02831)(0.000615)}{(65)(15)}\right] 6.565
\end{aligned}
$$

$$
\mathrm{p}_{\mathrm{wf}}=4367 \mathrm{psia}
$$

THANK YOU

