Al-Ayen University College of Petroleum Engineering

Numerical Methods and Reservoir Simulation

Lecturer: Dr. Mohammed Idrees Al-Mossawy
2020/2021

L16: Incorporation of Boundary Conditions/Point-Centered Grids

Outline

- Point-Centered Grids
\square Incorporation of Boundary Conditions/Point-Centered Grids
> Dirichlet Boundary Conditions
$>$ Neumann Boundary Conditions

Point-Centered Grids

Incorporation of Boundary Conditions/Point-Centered Grids

Dirichlet Boundary Conditions

- Dirichlet Boundary Conditions (pressure specified at the boundaries). For generality consider a heterogeneous reservoir with sources/sinks.

$$
\text { PDE } 1.127 \times 10^{-3} \frac{\partial}{\partial x}\left(\frac{k_{x}}{\mu} \frac{\partial p}{\partial x}\right)-\frac{q_{s c}(x, t) B}{V_{b}}=\frac{\phi c_{t}}{5.615} \frac{\partial p}{\partial t}, 0<x<L_{x}, t>0
$$

IC $p(x, 0)=P_{0}, 0 \leq x \leq L_{x}$,
BC $p(x=0, t>0)=P_{0}$
$\mathrm{BC} p\left(x=L_{x}, t>0\right)=P_{L}$

Point-Centered Grids

- Recall the grid system.

- General Implicit Difference Equations:

$$
-T_{x, i-1 / 2} p_{i-1}^{n+1}+\left(T_{x, i+1 / 2}+T_{x, i-1 / 2}+\widetilde{V}_{i}\right) p_{i}^{n+1}-T_{x, i+1 / 2} p_{i+1}^{n+1}=-q_{s c, i}^{n+1} B+\widetilde{V}_{i} p_{i}^{n}
$$

- For $i=1$,

$$
-T_{x, 1 / 2} p_{0}^{n+1}+\left(T_{x, 3 / 2}+T_{x, 1 / 2}+\widetilde{V}_{1}\right) p_{1}^{n+1}-T_{x, 3 / 2} p_{2}^{n+1}=-q_{s c, 1}^{n+1} B+\widetilde{V}_{1} p_{1}^{n}
$$

Because p_{0} is known (BC), then for $i=1$,

$$
\left(T_{x, 3 / 2}+T_{x, 1 / 2}+\widetilde{V}_{1}\right) p_{1}^{n+1}-T_{x, 3 / 2} p_{2}^{n+1}=-q_{s c, 1}^{n+1} B+\widetilde{V}_{1} p_{1}^{n}+T_{x, 1 / 2} p_{0}^{n+1}
$$

- For $i=2,3, \ldots, N_{x}-2$
$-T_{x, i-1 / 2} p_{i-1}^{n+1}+\left(T_{x, i+1 / 2}+T_{x, i-1 / 2}+\widetilde{V}_{i}\right) p_{i}^{n+1}-T_{x, i+1 / 2} p_{i+1}^{n+1}=-q_{s, i}^{n+1} B+\widetilde{V}_{i} p_{i}^{n}$
where we evaluate transmissibilities from:
$T_{x, i+1 / 2}=1.127 \times 10^{-3} \frac{\lambda_{x, i+1 / 2} w h}{\left(x_{i+1}-x_{i}\right)}$ and $T_{x, i-1 / 2}=1.127 \times 10^{-3} \frac{\lambda_{x, i-1 / 2} w h}{\left(x_{i}-x_{i-1}\right)}$
- General Implicit Difference Equation:
$-T_{x, i-1 / 2} p_{i-1}^{n+1}+\left(T_{x, i+1 / 2}+T_{x, i-1 / 2}+\widetilde{V}_{i}\right) p_{i}^{n+1}-T_{x, i+1 / 2} p_{i+1}^{n+1}=-q_{s c, i}^{n+1} B+\widetilde{V}_{i} p_{i}^{n}$
- For $i=N_{x}-1$

$-T_{x, N_{x}-3 / 2} p_{N_{x}-2}^{n+1}+\left(T_{x, N_{x}-1 / 2}+T_{x, N_{x}-3 / 2}+\widetilde{V}_{N_{x}-1}\right) p_{N_{x}-1}^{n+1}-T_{x, N_{x}-1 / 2} p_{N_{x}}^{n+1}=-q_{s c, N_{x}-1}^{n+1} B+\widetilde{V}_{N_{x}-1} p_{N_{x}-1}^{n}$
- Note that N_{x} is the total number of Grid points including the grid points at the left- and right-hand reservoir Boundaries.
- Because $p_{N x}$ is known (from $B C$), then for $i=N_{x-1}$,
$-T_{x, N x-3 / 2} p_{N x-2}^{n+1}+\left(T_{x, N x-3 / 2}+T_{x, N x-1 / 2}+\widetilde{V}_{N x-1}\right) p_{N x-1}^{n+1}=-q_{s c, N x-1}^{n+1} B+\widetilde{V}_{N x-1} p_{N x-1}^{n}+T_{x, N x-1 / 2} p_{N x}^{n+1}$

Note: We will have $N_{x}-1$ unknowns and $N_{x}-1$ equations to solve here.

Incorporation of Boundary Conditions/Point-Centered Grids

Neumann Boundary Conditions

- Neumann Boundary Conditions (pressure gradients specified at the boundaries).
- For generality consider a heterogeneous reservoir with sources/sinks.

$$
\begin{gathered}
\text { PDE } 1.127 \times 10^{-3} \frac{\partial}{\partial x}\left(\frac{k_{x}}{\mu} \frac{\partial p}{\partial x}\right)-\frac{q_{s c}(x, t) B}{V_{b}}=\frac{\phi c_{t}}{5.615} \frac{\partial p}{\partial t}, 0<x<L_{x}, t>0 \\
\text { IC } p(x, t=0)=P_{\text {Initial },}, 0 \leq x \leq L_{x}, \\
\text { BC } \frac{\partial p(x=0, t>0)}{\partial x}=C \\
\text { BC } \frac{\partial p\left(x=L_{x}, t>0\right)}{\partial x}=D
\end{gathered}
$$

Note : if $C=0$ and/or $D=0$, then we have no - flow (closed) boundary.

Point-Centered Grids

- Recall the grid system.

Incorporating Neumann BCs to a point-centered grid as shown above can be handled by reflections (images) of the first and last grids (red colored in above figure). Note that if a source/sink at these blocks, then imaging will also duplicate the source/sink.

- General Implicit Difference Equation: Multiply both sides by the bulk volume of the grid-block $i, V_{b, i}=\Delta x_{i} w h$

$$
\begin{aligned}
& 1.127 \times 10^{-3} \Delta x_{i} w h\left[\frac{\lambda_{x, i+1 / 2}\left(\frac{p_{i+1}^{n+1}-p_{i}^{n+1}}{x_{i+1}-x_{i}}\right)-\lambda_{x, i-1 / 2}\left(\frac{p_{i}^{n+1}-p_{i-1}^{n+1}}{x_{i}-x_{i-1}}\right)}{x_{i+1 / 2}-x_{i-1 / 2}}\right]-q_{s c, i}^{n+1} B=\frac{\left(\phi c_{t}\right)_{i} \Delta x_{i} w h}{5.615}\left(\frac{p_{i}^{n+1}-p_{i}^{n}}{\Delta t^{n+1}}\right) \\
& T_{x, i+1 / 2}\left(p_{i+1}^{n+1}-p_{i}^{n+1}\right)-T_{x, i-1 / 2}\left(p_{i}^{n+1}-p_{i-1}^{n+1}\right)-q_{s c, i}^{n+1} B=\widetilde{V}_{i}\left(p_{i}^{n+1}-p_{i}^{n}\right)
\end{aligned}
$$

or
$-T_{x, i-1 / 2} p_{i-1}^{n+1}+\left(T_{x, i+1 / 2}+T_{x, i-1 / 2}+\widetilde{V}_{i}\right) p_{i}^{n+1}-T_{x, i+1 / 2} p_{i+1}^{n+1}=-q_{s c, i}^{n+1} B+\widetilde{V}_{i} p_{i}^{n}$
$T_{x, i+1 / 2}=1.127 \times 10^{-3} \frac{\lambda_{x, i+1 / 2} w h}{\left(x_{i+1}-x_{i}\right)}, T_{x, i-1 / 2}=1.127 \times 10^{-3} \frac{\lambda_{x, i-1 / 2} w h}{\left(x_{i}-x_{i-1}\right)}$, and $\widetilde{V}_{i}=\frac{\left(\phi c_{t}\right) \Delta x_{i} w h}{5.615 \Delta t^{n+1}}$

Difference equation is the same as before!

- The General Implicit Difference Equations for $i=1,2, \ldots, N_{x-1}$.

$$
T_{x, i+1 / 2}\left(p_{i+1}^{n+1}-p_{i}^{n+1}\right)-T_{x, i-1 / 2}\left(p_{i}^{n+1}-p_{i-1}^{n+1}\right)-q_{s c, i}^{n+1} B=\widetilde{V}_{i}\left(p_{i}^{n+1}-p_{i}^{n}\right)
$$

- For $i=0$, we have

$$
T_{x, 1 / 2}\left(p_{1}^{n+1}-p_{0}^{n+1}\right)-T_{x,-1 / 2}\left(p_{0}^{n+1}-p_{-1}^{n+1}\right)-2 q_{s c, 0}^{n+1} B=\widetilde{V}_{0}\left(p_{0}^{n+1}-p_{0}^{n}\right)
$$

Note that $T_{x, 1 / 2}=T_{x,-1 / 2}$ because of imaging

$$
(\partial p / \partial x)_{x=0}=C
$$

p_{0} and p_{-1} are the pressures at x_{0}, and x_{-1}. This adds two additional unknowns to the unknown pressures at the interior grid-points; $p_{i}, i=1,2, \ldots, N_{x}-1$.

- Recall that boundary condition at $x=0$ can be approximated as:

$$
\begin{gathered}
\left(\frac{\partial p}{\partial x}\right)_{x_{0}=0}^{n+1}=\frac{p_{1}^{n+1}-p_{-1}^{n+1}}{x_{1}-x_{-1}}=C \\
p_{1}^{n+1}=p_{-1}^{n+1}+C\left(x_{1}-x_{-1}\right)
\end{gathered}
$$

If $C=0$ (no-flow or closed left-hand boundary),
then

$$
\begin{gathered}
p_{1}^{n+1}=p_{-1}^{n+1} \\
T_{x, 1 / 2}\left(p_{1}^{n+1}-p_{0}^{n+1}\right)-T_{x,-1 / 2}\left(p_{0}^{n+1}-p_{-1}^{n+1}\right)-2 q_{s c, 0}^{n+1} B=\widetilde{V}_{0}\left(p_{0}^{n+1}-p_{0}^{n}\right) \\
2 T_{x, 1 / 2}\left(p_{1}^{n+1}-p_{0}^{n+1}\right)-2 q_{s c, 0}^{n+1} B=\widetilde{V}_{0}\left(p_{0}^{n+1}-p_{0}^{n}\right)
\end{gathered}
$$

- The General Implicit Difference Equations for $i=1,2, \ldots, N_{x-1}$.

$$
T_{x, i+1 / 2}\left(p_{i+1}^{n+1}-p_{i}^{n+1}\right)-T_{x, i-1 / 2}\left(p_{i}^{n+1}-p_{i-1}^{n+1}\right)-q_{s c, i}^{n+1} B=\widetilde{V}_{i}\left(p_{i}^{n+1}-p_{i}^{n}\right)
$$

- For $i=N_{x}$,
$T_{x, N_{x+1 / 2}}\left(p_{N_{x+1}}^{n+1}-p_{N_{x}}^{n+1}\right)-T_{x, N_{x}-1 / 2}\left(p_{N_{x}}^{n+1}-p_{N x-1}^{n+1}\right)-2 q_{s c, N_{x}}^{n+1} B=\widetilde{V}_{N_{x}}\left(p_{N_{x}}^{n+1}-p_{N_{x}}^{n}\right)$
Note that $T_{x, N_{x+1 / 2}}=T_{x, N_{x-1 / 2}}$ because of imaging

$p_{N x}$ and $p_{N x+1}$ are the pressures at $x_{N x}$, and $x_{N x+1}$. These are two more additional unknowns.
- Recall that boundary condition at $x_{N x}=L_{x}$ can be approximated as:

$$
\begin{aligned}
& \left(\frac{\partial p}{\partial x}\right)_{x_{N_{x}}=0}^{n+1}=\frac{p_{N_{N_{+1}}}^{n+1}-p_{N_{x}-1}^{n+1}}{x_{N_{x}+1}-x_{N_{x}-1}}=D \\
& p_{N_{x}+1}^{n+1}=p_{N_{x}-1}^{n+1}+D\left(x_{N_{x}+1}-x_{N_{x}-1}\right)
\end{aligned}
$$

If $D=0$ (no-flow or closed right-hand boundary), then

$$
\begin{gathered}
p_{N x-1}^{n+1}=p_{N_{x}-1}^{n+1} \\
T_{x, N x+1 / 2}\left(p_{N x+1}^{n+1}-p_{N x}^{n+1}\right)-T_{x, N x-1 / 2}\left(p_{N x}^{n+1}-p_{N x-1}^{n+1}\right)-2 q_{s c, N x}^{n+1} B=\widetilde{V}_{N x}\left(p_{N x}^{n+1}-p_{N x}^{n}\right) \\
-2 T_{x, N_{x}-1 / 2}\left(p_{N x}^{n+1}-p_{N x-1}^{n+1}\right)-2 q_{s c, N x}^{n+1} B=\widetilde{V}_{N x}\left(p_{N x}^{n+1}-p_{N x}^{n}\right)
\end{gathered}
$$

- In summary, we have the following system of equations to solve:

$$
\begin{gathered}
T_{x, 1 / 2}\left(p_{1}^{n+1}-p_{0}^{n+1}\right)-T_{x,-1 / 2}\left(p_{0}^{n+1}-p_{-1}^{n+1}\right)-2 q_{s c, 0}^{n+1} B=\widetilde{V}_{0}\left(p_{0}^{n+1}-p_{0}^{n}\right) \\
p_{-1}^{n+1}=p_{1}^{n+1}-C\left(x_{1}-x_{-1}\right) \\
T_{x, i+1 / 2}\left(p_{i+1}^{n+1}-p_{i}^{n+1}\right)-T_{x, i-1 / 2}\left(p_{i}^{n+1}-p_{i-1}^{n+1}\right)-q_{s c, i}^{n+1} B=\widetilde{V}_{i}\left(p_{i}^{n+1}-p_{i}^{n}\right) \\
\text { for } i=1,2, \ldots, N_{x}-1
\end{gathered} r^{T_{x, N x+1 / 2}\left(p_{N x+1}^{n+1}-p_{N x}^{n+1}\right)-T_{x, N x-1 / 2}\left(p_{N x}^{n+1}-p_{N x-1}^{n+1}\right)-2 q_{s c, N x}^{n+1} B=\widetilde{V}_{N x}\left(p_{N x}^{n+1}-p_{N x}^{n}\right)} \begin{aligned}
& p_{N_{x}+1}^{n+1}=p_{N_{x}-1}^{n+1}+D\left(x_{N_{x}+1}-x_{N_{x}-1}\right)
\end{aligned}
$$

$N_{x}+1$ unknowns and $N_{x}+1$ equations if we combine the first two and the last two equations. Unknowns are $p_{0}, p_{1}, \ldots, p_{N x}$. Note that we solve the pressures at the boundary as well.

THANK YOU

