TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

equipment components.

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	AL-Ayen University		
2. University Department/Centre Department	College of Engineering/Petroleum		
3. Course title/code	Production I		
4. Modes of Attendance offered Tutorial	Online Education/On campus		
5. Semester/Year	Fall-2022 to Spring-2023		
6. Number of hours tuition (total)	60 hrs		
7. Date of production/revision of this specification 3/11/2021			
8. Aims of the Course			
Assess and recommend geometrical configurations for drilled wellbores for both production and injection applications.			
 Identify, evaluate and recommend functional capability of completionstrings for a variety of situations. 			
Describe the purpose and generic operating principles for major completion			

- Identify limitation of well completion schematically designs and potential failure mechanisms/operational problems with equipment.
- Assess well safety requirements and capabilities inherent in well design.
- Describe the options, and their inherent constraints / advantages, for producing multiple reservoir units.
- Propose general completion schematic options for producing two, three or more zones simultaneously.
- Define the equipment requirements in terms of packers, tubing hangers and Xmas trees for multiple completion strings.
- Describe the equipment used for wireline servicing of completion components.

9. Learning Outcomes, Teaching, Learning and Assessment Methode

A- Cognitive goals.

The development of a hydrocarbon reservoir requires a large number of wells to be drilled and completed to allow the structure to be depleted. The drilling and completion operations are crucial to the long-term viability of the well in meeting its specified objectives. The design and completion of both production and injection wells must:

- Provide optimum production/injection performance.
- Ensure safety (both pressure and fluid containments).
- Maximize the integrity and reliability of the completion over the envisaged life of the completed well
- Minimize the total costs per unit volume of fluid produced or injected, i.e. minimize the total costs of initial completion, maintaining production and remedial measures
- Other criteria e.g. control sand production depending upon the particular reservoir characteristics or development constraints.

 The completion design involves four principal decision areas, that together

provide a conceptual design.

- Specification of the bottom hole completion technique
- Selection of the production conduit
- Assessment of completion string facilities
- Evaluation of well performance / productivity-injectivity
 - B. The skills goals special to the course.
 - B1. Simulation
 - **B2-** Reservoir Management
 - **B3-Economic Evaluation**

Teaching and Learning Method Assessment methods

-Formation evaluation. Developing and refining the geological model of the field.
-Well log analysis and interpretation. Core analysis. Well correlation. Mapping of reservoir rock properties.

-Estimation of oil and gas reserves. Reserves audits by Russian and Western standards.

-Geologic evaluation and recommendations for development targets. Geological data preparation for the purposes of field development planning.

C. Affective and value goals C1. Academic honesty C2-Logic C3-Critical Thinking

Teaching and Learning Methods

- -Simulation
- -Field data
- -Government reports

Assessment methods

- 1-Weekly Reports
- 2-Quizes
- 3- Exams

- D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)
 D1.Strong English Language
 D2. Professional Investigation
 D3. Team Work

 - D4. Software skills

10. Course Structure					
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1-4	10	Introduction to Production	1-4	Software simulation	Assignments and quizes
5-7	6	Flow regimes	5-7	Field data	Assignments and quizes
8-10	4	Well completion	8-10	Experimental data	Assignments and quizes
10-15	10	Well hardware	10-15	Simulation	Assignments and quizes
15-20	10	Separators	15-20	Governmental reports	Assignments and quizes
20-25	10	Transportati ons	20-25	Field data	Assignments and quizes
25-30	10	Gathering systems	25-30	Simulation	Assignments and quizes

11. Infrastructure	
Books Required reading: E	conomides, et al, Petroleum Production Systems, Prentice Hall, 1994. Other handouts will be posted on Blackboard to supplement this text.
2. Main references (sources)	SPE Electronic papers: <u>www.onepretro.org</u>
A- Recommended books and	SPE Electronic papers: <u>www.onepretro.org</u>
references (scientific journals, reports).	vww.onepretro.org

12.	The development of the curriculum plan
	Adding some modern concepts in the oil production technology.

B-Electronic references, Internet: <u>www.onepretro.org</u>

sites...