
Example 4-6

A four-layer oil reservoir is characterized by a set of reservoir capillary

pressure-saturation curves as shown in Figure 4-16. The following additional

data are also available.

Layer Depth, ft Permeability, md

1 4000–4010 80
2 4010–4020 100
3 4020–4035 70
4 4035–4060 90
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FIGURE 4-15 Effect of permeability on water saturation profile. (After Cole, F., 1969).
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WOC ¼ 4,060 ft

Water density ¼ 65.2 lb/ft3

Oil density ¼ 55.2 lb/ft3

Calculate and plot water saturation versus depth for this reservoir.

Solution

Step 1. Establish the FWL by determining the displacement pressure pd for the

bottom layer, i.e., Layer 4, and apply Equation 4-37:

� pd ¼ 0.75 psi

FWL¼ 4;060 +
144ð Þ 0:75ð Þ
65:2�55:2ð Þ¼ 4;070:8 ft

Step 2. The top of the bottom layer is located at a depth of 4,035 ft, which is

35.8 ft above the FWL. Using that height h of 35.8 ft, calculate the cap-

illary pressure at the top of the bottom layer.

pc ¼
h

144

� �
Δρ¼ 35:8

144

� �
65:2�55:2ð Þ¼ 2:486 psi

� From the capillary pressure-saturation curve designated for Layer

4, read the water saturation that corresponds to a pc of 2.486 to give

Sw ¼ 0.23.

� Assume different values of water saturations and convert the corre-

sponding capillary pressures into height above the FWL by apply-

ing Equation 4-34.

h¼ 144 pc
ρw�ρo

FIGURE 4-16 Variation of pc with k.
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Sw Pc, psi h, ft Depth 5 FWL – h

0.23 2.486 35.8 4035
0.25 2.350 33.84 4037
0.30 2.150 30.96 4040
0.40 1.800 25.92 4045
0.50 1.530 22.03 4049
0.60 1.340 19.30 4052
0.70 1.200 17.28 4054
0.80 1.050 15.12 4056
0.90 0.900 12.96 4058

Step 3. The top of Layer 3 is located at a distance of 50.8 ft from the FWL (i.e.,

h ¼ 4,070.8 – 4,020 ¼ 50.8 ft). Calculate the capillary pressure at the

top of the third layer:

�
pc ¼

50:8

144

� �
65:2�55:2ð Þ¼ 3:53psi

� The corresponding water saturation as read from the curve desig-

nated for Layer 3 is 0.370.

� Construct the following table for Layer 3.

Sw pc, psi h, ft Depth 5 FWL – h

0.37 3.53 50.8 4020
0.40 3.35 48.2 4023
0.50 2.75 39.6 4031
0.60 2.50 36.0 4035

Step 4. � Distance from the FWL to the top of Layer 2 is:

h¼ 4;070:8�4;010¼ 60:8 ft

� pc ¼
60:8

144

� �
65:2�55:2ð Þ¼ 4:22psi

� Sw at pc of 4.22 psi is 0.15.

� Distance from the FWL to the bottom of the layer is 50.8 ft that cor-

responds to a pc of 3.53 psi and Sw of 0.15. This indicates that the

second layer has a uniform water saturation of 15%.

Step 5. For Layer 1, distance from the FWL to the top of the layer:

� h ¼ 4,070.8 – 4,000 ¼ 70.8 ft

� pc ¼
70:8

144

� �
10ð Þ¼ 4:92psi

� Sw at the top of Layer 1 ¼ 0.25

� The capillary pressure at the bottom of the layer is 3.53 psi with a

corresponding water saturation of 0.27.

Step 6. Figure 4-17 documents the calculated results graphically. The figure

indicates that Layer 2 will produce 100% oil while all remaining layers

produce oil and water simultaneously.
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Leverett J-Function

Capillary pressure data are obtained on small core samples that represent an

extremely small part of the reservoir and, therefore, it is necessary to combine

all capillary data to classify a particular reservoir. The fact that the capillary

pressure-saturation curves of nearly all naturally porous materials have many

features in common has led to attempts to devise some general equation describ-

ing all such curves. Leverett (1941) approached the problem from the standpoint

of dimensional analysis.

Realizing that capillary pressure should depend on the porosity, interfacial

tension, and mean pore radius, Leverett defined the dimensionless function of

saturation, which he called the J-function, as

J Swð Þ¼ 0:21645
pc
σ

ffiffiffi
k

ϕ

s
(4-36)

where

J(Sw) ¼ Leverett J-function

pc ¼ capillary pressure, psi

σ ¼ interfacial tension, dynes/cm

k ¼ permeability, md

ϕ ¼ fractional porosity

In doing so, Leverett interpreted the ratio of permeability, k, to porosity, ϕ, as
being proportional to the square of a mean pore radius.

The J-function was originally proposed as a means of converting all

capillary-pressure data to a universal curve. There are significant differences

in correlation of the J-function with water saturation from formation to
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FIGURE 4-17 Water saturation profile.
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formation, so that no universal curve can be obtained. For the same formation,

however, this dimensionless capillary-pressure function serves quite well inmany

cases to removediscrepancies in the pc versusSw curves and reduce them to a com-

mon curve. This is shown for various unconsolidated sands in Figure 4-18.

Example 4-7

A laboratory capillary pressure test was conducted on a core sample taken from

the Nameless Field. The core has a porosity and permeability of 16% and 80md,

respectively. The capillary pressure-saturation data are given as follows:

Sw pc, psi

1.0 0.50
0.8 0.60
0.6 0.75
0.4 1.05
0.2 1.75

1.4
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FIGURE 4-18 The Leverett J-function for unconsolidated sands. (After Leverett, 1941.)
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The interfacial tension is measured at 50 dynes/cm. Further reservoir engi-

neering analysis indicated that the reservoir is better described at a porosity

value of 19% and an absolute permeability of 120 md. Generate the capillary

pressure data for the reservoir.

Solution

Step 1. Calculate the J-function using the measured capillary pressure data.

J Swð Þ¼ 0:21645 pc=50ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
80=0:16

p
¼ 0:096799 pc

Sw pc, psi J(Sw) 5 0.096799 (pc)

1.0 0.50 0.048
0.8 0.60 0.058
0.6 0.75 0.073
0.4 1.05 0.102
0.2 1.75 0.169

Step 2. Using the new porosity and permeability values, solve Equation 4-36

for the capillary pressure pc.

pc ¼ J Swð Þσ= 0:21645

ffiffiffi
k

ϕ

r	 


pc ¼ J Swð Þ50= 0:21645

ffiffiffiffiffiffiffiffiffi
120

0:19

r" #

pc ¼ 9:192 J Swð Þ
Step 3. Reconstruct the capillary pressure-saturation table.

Sw J(Sw) pc 5 9.192 J(Sw)

1.0 0.048 0.441
0.8 0.058 0.533
0.6 0.073 0.671
0.4 0.102 0.938
0.2 0.169 1.553

Converting Laboratory Capillary Pressure Data

For experimental convenience, it is common in the laboratory determination of

capillary pressure to use air-mercury or air-brine systems, rather than the actual

water-oil system characteristic of the reservoir. Since the laboratory fluid sys-

tem does not have the same surface tension as the reservoir system, it becomes

necessary to convert laboratory capillary pressure to reservoir capillary pres-

sure. By assuming that the Leverett J-function is a property of rock and does

not change from the laboratory to the reservoir, we can calculate reservoir cap-

illary pressure as show below.
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pcð Þres ¼ pcð Þlab
σres
σlab

Even after the laboratory capillary pressure has been corrected for surface

tension, it may be necessary to make further corrections for permeability and

porosity. The reason for this is that the core sample that was used in performing

the laboratory capillary pressure test may not be representative of the average

reservoir permeability and porosity. If we assume that the J-function will be

invariant for a given rock type over a range of porosity and permeability values,

then the reservoir capillary pressure can be expressed as

pcð Þres ¼ pcð Þlab
σres
σlab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕreskcoreð Þ= ϕcorekresð Þ

p
(4-37)

where

(pc)res ¼ reservoir capillary pressure

σres ¼ reservoir surface or interfacial tension

kres ¼ reservoir permeability

ϕres ¼ reservoir porosity

(pc)lab ¼ laboratory measured capillary pressure

ϕcore ¼ core porosity

kcore ¼ core permeability

PERMEABILITY

Permeability is a property of the porous medium that measures the capacity and

ability of the formation to transmit fluids.The rockpermeability, k, is avery impor-

tant rockpropertybecause it controls the directionalmovement and the flowrate of

the reservoir fluids in the formation. This rock characterization was first defined

mathematically by Henry Darcy in 1856. In fact, the equation that defines perme-

ability in terms of measurable quantities is called Darcy’s Law.

Darcy developed a fluid flow equation that has since become one of the stan-

dard mathematical tools of the petroleum engineer. If a horizontal linear flow of

an incompressible fluid is established through a core sample of length L and a

cross-section of area A, then the governing fluid flow equation is defined as

v¼�k

μ
dp

dL
(4-38)

where

ν ¼ apparent fluid flowing velocity, cm/sec

k ¼ proportionality constant, or permeability, Darcy’s

μ ¼ viscosity of the flowing fluid, cp

dp/dL ¼ pressure drop per unit length, atm/cm

The velocity, ν, in Equation 4-38 is not the actual velocity of the flowing fluid

but is the apparent velocity determined by dividing the flow rate by the cross-
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sectional area across which fluid is flowing. Substituting the relationship, q/A,

in place of ν in Equation 4-38 and solving for q results in

q¼�kA

μ
dp

dL
(4-39)

where

q ¼ flow rate through the porous medium, cm3/sec

A ¼ cross-sectional area across which flow occurs, cm2

With a flow rate of one cubic centimeter per second across a cross-sectional area

of one square centimeter with a fluid of one centipoise viscosity and a pressure

gradient at one atmosphere per centimeter of length, it is obvious that k is unity.

For the units described above, k has been arbitrarily assigned a unit calledDarcy
in honor of the man responsible for the development of the theory of flow

through porous media. Thus, when all other parts of Equation 4-39 have values

of unity, k has a value of one Darcy.

One Darcy is a relatively high permeability as the permeabilities of most

reservoir rocks are less than one Darcy. In order to avoid the use of fractions

in describing permeabilities, the term millidarcy is used. As the term indicates,

one millidarcy, i.e., 1 md, is equal to one-thousandth of one Darcy or,

1 Darcy ¼ 1000 md

The negative sign in Equation 4-39 is necessary as the pressure increases in

one direction while the length increases in the opposite direction.

Equation 4-39 can be integrated when the geometry of the system through

which fluid flows is known. For the simple linear system shown in Figure 4-19,

the integration is performed as follows:

q

ðL
o

dL¼�kA

μ

ðp2
p1

dp

Flow
p1 p2

h

A

W

L
FIGURE 4-19 Linear flow model.
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Integrating the above expression yields:

qL¼�kA

μ
p2�p1ð Þ

It should be pointed out that the volumetric flow rate, q, is constant for liq-

uids because the density does not change significantly with pressure.

Since p1 is greater than p2, the pressure terms can be rearranged, which will

eliminate the negative term in the equation. The resulting equation is:

q¼ kA p1�p2ð Þ
μL

(4-40)

Equation 4-40 is the conventional linear flow equation used in fluid flow

calculations.

Standard laboratory analysis procedures will generally provide reliable data

on permeability of core samples. If the rock is not homogeneous, the whole core

analysis technique will probably yield more accurate results than the analysis of

core plugs (small pieces cut from the core). Procedures that have been used for

improving the accuracy of the permeability determination include cutting the

core with an oil-base mud, employing a pressure-core barrel, and conducting

the permeability tests with reservoir oil.

Permeability is reduced by overburden pressure, and this factor should be

considered in estimating permeability of the reservoir rock in deepwells because

permeability is an isotropic property of porous rock in some defined regions of

the system, that is, it is directional. Routine core analysis is generally concerned

with plug samples drilled parallel to bedding planes and, hence, parallel to direc-

tion of flow in the reservoir. These yield horizontal permeabilities (kh).

Themeasured permeability on plugs that are drilled perpendicular to bedding

planes are referred to as vertical permeability (kv). Figure 4-20 shows a schematic

illustration of the concept of the core plug and the associated permeability.

As shown in Figure 4-20, there are several factors that must be considered as

possible sourcesof error indetermining reservoir permeability.These factors are:

1. Core sample may not be representative of the reservoir rock because of res-

ervoir heterogeneity.

2. Core recovery may be incomplete.

3. Permeability of the core may be altered when it is cut, or when it is cleaned

and dried in preparation for analysis. This problem is likely to occur when

the rock contains reactive clays.

4. Sampling process may be biased. There is a temptation to select the best

parts of the core for analysis.

Permeability is measured by passing a fluid of known viscosity p through a core

plug of measured dimensions (A and L) and then measuring flow rate q and

pressure drop Δp. Solving Equation 4-40 for the permeability, gives:

k¼ qμL
AΔp
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where

L ¼ length of core, cm

A ¼ cross-sectional area, cm2

The following conditions must exist during the measurement of permeability:

� Laminar (viscous) flow

� No reaction between fluid and rock

� Only single phase present at 100% pore space saturation

This measured permeability at 100% saturation of a single phase is called the

absolute permeability of the rock.

Example 4-8

A brine is used to measure the absolute permeability of a core plug. The rock

sample is 4 cm long and 3 cm2 in cross section. The brine has a viscosity of 1.0

cp and is flowing a constant rate of 0.5 cm3/sec under a 2.0 atm pressure dif-

ferential. Calculate the absolute permeability.

FIGURE 4-20 Representative samples of porous media.
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Solution

Applying Darcy’s equation, i.e., Equation 4-40, gives:

0:5¼ kð Þ 3ð Þ 2ð Þ
1ð Þ 4ð Þ

k¼0:333Darcys

Example 4-9

Rework the above example assuming that an oil of 2.0 cp is used to measure the

permeability. Under the same differential pressure, the flow rate is 0.25 cm3/sec.

Solution

Applying Darcy’s equation yields:

0:5¼ kð Þ 3ð Þ 2ð Þ
1ð Þ 4ð Þ

k¼ 0:333Darcys

Dry gas is usually used (air, N2, He) in permeability determination because

of its convenience, availability, and to minimize fluid-rock reaction.

The measurement of the permeability should be restricted to the low (lam-

inar/viscous) flow rate region, where the pressure remains proportional to flow

rate within the experimental error. For high flow rates, Darcy’s equation as

expressed by Equation 4-40 is inappropriate to describe the relationship of flow

rate and pressure drop.

In using dry gas in measuring the permeability, the gas volumetric flow rate

q varies with pressure because the gas is a highly compressible fluid. Therefore,

the value of q at the average pressure in the core must be used in Equation 4-40.

Assuming the used gases follow the ideal gas behavior (at low pressures), the

following relationships apply:

p1V1 ¼ p2V2 ¼ pmVm

In terms of the flow rate q, the above equation can be equivalently

expressed as:

p1q1 ¼ p2q2 ¼ pmqm (4-41)

with the mean pressure pm expressed as:

pm ¼ p1 + p2
2

where

p1, p2, pm ¼ inlet, outlet, and mean pressures, respectively, atm

V1, V2, Vm ¼ inlet, outlet, and mean gas volume, respectively, cm3
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